簡易檢索 / 詳目顯示

研究生: 游敏杰
Min-Chieh Yu
論文名稱: 利用個人生理指標與室內情境資訊以辨別使用者日常活動之研究
Study on Recognizing User Daily Activities by Personal Biomarkers and Indoor Context Information
指導教授: 呂政修
Jenq-Shiou Leu
口試委員: 呂政修
Jenq-Shiou Leu
袁錦鋒
Kevin Kam Fung Yuen
衛信文
Hsin-Wen Wei
陳省隆
Hsing-Lung Chen
林昌鴻
Chang-Hong Lin
林敬舜
Ching-Shun Lin
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 65
中文關鍵詞: 智慧環境日常活動辨識心率變異性室內情境資訊
外文關鍵詞: Intelligent Environment, Daily Activities Recognition, Heart Rate Variability, Indoor Context Information
相關次數: 點閱:204下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來智慧環境的概念逐漸廣為人知,當中最受到人們關注的領域便是智慧家庭,由於當代社會生活作息不規律導致生活品質下降,可預期人們將會使用智慧家庭中的相關應用來改進他們的生活品質。醫學專家可通過了解人們的日常活動,詳細了解人們的健康狀況,進而協助人們改善生活品質。過去的研究指出可利用非侵入式感測器以收集可用於辨識人們日常作息之個人生理指標,也就是心率變異性資料。此外,萃取自智慧環境的居家情境資訊也有望可用於辨識人們的生活作息。
    在此研究中,首先收集了參與實驗人員在現實生活中產生之心率變異性和日常活動資料,透過資料前處理技術來增進資料之品質,讓機器學習演算法能夠更好地透過心率變異性資料分類出使用者的日常活動。並使用了幾種常見的監督式機器演算法,在實驗結果中得到了高精確度的分類結果。之後更進一步地利用了所謂單一使用者獨立驗證的概念,評估心率變異性資料是否存有跨使用者的共通隱藏規律。
    緊接著,本研究參考了過去以居家情境資訊辨識人們日常活動的相關研究,根據先前收集到的現實生活資料和過去相關研究,建立了居家情境資訊的模擬資料。模擬結果顯示出日常活動的辨識成功率在加入居家情境資訊的模擬資料後有所提升。


    Since the concept of Intelligent Environment has been widely spread in recent years. Smart Home as the most concerned branch of Intelligent Environment, it is expected that smart home applications will be incorporated into people's lives to improve their quality of life, avoiding the decline in quality of life caused by irregular lifestyles in contemporary society. By investigating people's daily routines, medical experts will have a better understanding of their health conditions to further assist to improve their life quality. Previous research has indicated that the non-intrusive sensor can be used to collect participants' biomarkers, such as Heart Rate Variability (HRV), which can be used to recognize people's activities. Moreover, the indoor context information extracted from the intelligent environment has the potential to be used for daily activities recognition. In this dissertation, participants' real-life data on HRV signals and daily routines are collected. Further, data preprocessing methods are used to improve the data quality, and machine learning techniques are used to produce classification models to recognize participants' activities from HRV data. Several supervised learning methods are evaluated, and the results indicate the classification models can detect daily activities with high accuracy. An additional method of Leave-Individual-Out is used to evaluate whether there are common HRV patterns in participants' activities across different individuals. After that, we refer to the related research on the activities recognition using indoor context information, to build simulated data of indoor context information based on participants' real-life data and the past research studies. The simulation results show that the recognition accuracy of daily activities has improved after adding the simulated indoor context information.

    中文摘要 I Abstract II Acknowledgements III Ҟᒵ IV List of Figures VI List of Tables VIII List of Equations IX List of Acronyms X List of Symbols XI 1 Introduction 1 1.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Dissertation Organiztion . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Recognizing Daily Activities Through Heart Rate Variability Recordings Using Machine Learning 4 2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Data Acquisition and Preprocessing . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 Data Cleansing . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.3 Label Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Classification and Validation Methods . . . . . . . . . . . . . . . . . . . 14 2.3.1 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.2 Random Forest Method . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.3 Adaptive Boosting Method . . . . . . . . . . . . . . . . . . . . . 18 2.3.4 K-Nearest Neighbors Method . . . . . . . . . . . . . . . . . . . 20 2.3.5 K-Fold Cross Validation . . . . . . . . . . . . . . . . . . . . . . 21 2.3.6 Leave-Individual-Out Validation . . . . . . . . . . . . . . . . . . 21 2.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.1 Leave-Individual-Out Evaluation . . . . . . . . . . . . . . . . . 29 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Assisting the Daily Activities Recognition with the Indoor Context Information 34 3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.1 Wireless-based Indoor Positioning Systems . . . . . . . . . . . . 36 3.2.2 Indoor Context Information and Activities Recognition . . . . . . 37 3.3 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.1 The simulated indoor context information . . . . . . . . . . . . . 39 3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Conclusions and Future Works 44 4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 References 46 Publication List 50

    [1] J. Bi, Y. Huang, Y. Xiao, J. Cheng, F. Li, T. Wang, J. Chen, L. Wu, Y. Liu, R. Luo, and X. Zhao, “Association of lifestyle factors and suboptimal health status: a cross-sectional study of chinese students,”BMJ Open, vol. 4, p. e005156, May 2014.
    [2] W. Wang and Y. Yan, “Suboptimal health: a new health dimension for translational medicine,” Clinical and Translational Medicine, vol. 1, pp. 28–28, Sept. 2012.
    [3] T. T. Fung, F. B. Hu, J. Yu, N.-F. Chu, D. Spiegelman, G. H. Tofler, W. C. Willett, and E. B. Rimm, “Leisure-time physical activity, television watching, and plasma biomarkers of obesity and cardiovascular disease risk,” American Journal of Epidemiology, vol. 152, no. 12, pp. 1171–1178, 2000.
    [4] D. D. Farhud, “Impact of lifestyle on health,” Iranian Journal of Public Health, vol. 44, pp. 1442–1444, Oct. 2015.
    [5] S. H. Bardach and N. E. Schoenberg, “The content of diet and physical activity consultations with older adults in primary care,” Patient education and counseling, vol. 95, pp. 319–324, Apr. 2014.
    [6] K. Iwasaki, M. Takahashi, and A. Nakata, “Health problems due to long working hours in japan: Working hours, workers’ compensation (karoshi), and preventive measures:,” Industrial Health, vol. 44, no. 4, pp. 537–540, 2006.
    [7] S.-L. Lim, C. Canavarro, M.-H. Zaw, F. Zhu, W.-C. Loke, Y.-H. Chan, and K.-G. Yeoh, “Irregular meal timing is associated with helicobacter pylori infection and gastritis,” ISRN Nutrition, vol. 2013, p. 714970, Dec. 2012.
    [8] E. L. Melanson, “Resting heart rate variability in men varying in habitual physical activity,” Medicine & Science in Sports & Exercise, vol. 32, no. 11, pp. 1894–1901, 2000.
    [9] C.-C. Yang and Y.-L. Hsu, “A review of accelerometry-based wearable motion detectors for physical activity monitoring,” Sensors (Basel, Switzerland), vol. 10, pp. 7772–7788, Aug. 2010.
    [10] A. Mannini and A. M. Sabatini, “Machine learning methods for classifying human physical activity from on-body accelerometers,” Sensors, vol. 10, no. 2, pp. 1154–1175, 2010.
    [11] M. Shoaib, H. Scholten, and P. J. M. Havinga, “Towards physical activity recognition using smartphone sensors,” in 2013 IEEE 10th International Conference on Ubiquitous Intelligence and Computing and 2013 IEEE 10th International Conference on Autonomic and Trusted Computing, pp. 80–87, 2013.
    [12] L. Tonello, F. B. Rodrigues, J. W. S. Souza, C. S. G. Campbell, A. S. Leicht, and D. A. Boullosa, “The role of physical activity and heart rate variability for the control of work related stress,” Frontiers in Physiology, vol. 5, p. 67, Feb. 2014.
    [13] M. Buchheit, C. Simon, A. U. Viola, S. Doutreleau, F. Piquard, and G. Brandenberger, “Heart rate variability in sportive elderly: relationship with daily physical activity.,” Medicine and science in sports and exercise, vol. 36, pp. 601–5, Apr 2004.
    [14] L. Soares-Miranda, J. Sattelmair, P. Chaves, G. E. Duncan, D. S. Siscovick, P. K. Stein, and D. Mozaffarian, “Physical activity and heart rate variability in older adults,” irculation, vol. 129, no. 21, pp. 2100–2110, 2014.
    [15] F. Shaffer and J. P. Ginsberg, “An overview of heart rate variability metrics and norms,” Frontiers in Public Health, vol. 5, p. 258, Sept. 2017.
    [16] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Data preprocessing for supervised leaning,” International Journal of Computer Science, vol. 1, no. 2, pp. 111–117, 2006.
    [17] J. F. Ramirez-Villegas, E. Lam-Espinosa, D. F. Ramirez-Moreno, P. C. Calvo-Echeverry, and W. Agredo-Rodriguez, “Heart rate variability dynamics for the prognosis of cardiovascular risk,” PLoS ONE, vol. 6, p. e17060, Jan. 2011.
    [18] K. Umetani, D. H. Singer, R. McCraty, and M. Atkinson, “Twenty-four hour time domain heart rate variability and heart rate: Relations to age and gender over nine decades,” Journal of the American College of Cardiology, vol. 31, no. 3, pp. 593 – 601, 1998.
    [19] F. Charte, A. Rivera, M. J. del Jesus, and F. Herrera, “Improving multi-label classifiers via label reduction with association rules,” in Hybrid Artificial Intelligent Systems (E. Corchado, V. Snášel, A. Abraham, M. Woźniak, M. Graña, and S.-B. Cho, eds.), (Berlin, Heidelberg), pp. 188–199, Springer Berlin Heidelberg, 2012.
    [20] S. J. Preece, J. Y. Goulermas, L. P. J. Kenney, D. Howard, K. Meijer, and R. Crompton, “Activity identification using body-mounted sensors - a review of classification techniques,” Physiological Measurement, vol. 30, no. 4, p. R1, 2009.
    [21] Y. Liu, L. Nie, L. Liu, and D. S. Rosenblum, “From action to activity: Sensor-based activity recognition,” Neurocomputing, vol. 181, pp. 108 – 115, 2016. Big Data Driven Intelligent Transportation
    Systems.
    [22] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p. 436, 2015.
    [23] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.
    [24] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of Computer and System Sciences, vol. 55, no. 1, pp. 119 – 139, 1997.
    [25] M. M. Massin, K. Maeyns, N. Withofs, F. Ravet, and P. Gérard, “Circadian rhythm of heart rate and heart rate variability,” Archives of Disease in Childhood, vol. 83, no. 2, pp. 179–182, 2000.
    [26] A. K. Dey, “Understanding and using context,” Personal Ubiquitous Comput., vol. 5, pp. 4–7, Jan. 2001.
    [27] P. Bahl and V. N. Padmanabhan, “Radar: an in-building rf-based user location and tracking system,” in Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), vol. 2, pp. 775–784 vol.2, 2000.
    [28] H. S. Ahn and W. Yu, “Environmental-adaptive rssi-based indoor localization,” IEEE Transactions on Automation Science and Engineering, vol. 6, pp. 626–633, Oct 2009.
    [29] J. Larranaga, L. Muguira, J. M. Lopez-Garde, and J. I. Vazquez, “An environment adaptive zigbeebased indoor positioning algorithm,” in 2010 International Conference on Indoor Positioning and
    Indoor Navigation, pp. 1–8, Sept 2010.
    [30] M. Youssef and A. Agrawala, “The horus wlan location determination system,” in Proceedings of the 3rd International Conference on Mobile Systems, Applications, and Services, MobiSys ’05, (New
    York, NY, USA), pp. 205–218, ACM, 2005.
    [31] F. Lassabe, P. Canalda, P. Chatonnay, and F. Spies, “Indoor wi-fi positioning: techniques and systems,” annals of telecommunications - annales des télécommunications, vol. 64, p. 651, Jul 2009.
    [32] S. H. Fang and T. N. Lin, “A novel access point placement approach for wlan-based location systems,” in 2010 IEEE Wireless Communication and Networking Conference, pp. 1–4, April 2010.
    [33] S. H. Fang and T. N. Lin, “Accurate indoor location estimation by incorporating the importance of access points in wireless local area networks,” in 2010 IEEE Global Telecommunications Conference
    GLOBECOM 2010, pp. 1–5, Dec 2010.
    [34] M. Brunato and R. Battiti, “Statistical learning theory for location fingerprinting in wireless lans,” Computer Networks, vol. 47, no. 6, pp. 825 – 845, 2005.
    [35] M. B. Kjærgaard, “A taxonomy for radio location fingerprinting,” in Location- and Context-Awareness (J. Hightower, B. Schiele, and T. Strang, eds.), (Berlin, Heidelberg), pp. 139–156, Springer Berlin
    Heidelberg, 2007.
    [36] S. H. Fang and T. N. Lin, “A dynamic system approach for radio location fingerprinting in wireless local area networks,” IEEE Transactions on Communications, vol. 58, pp. 1020–1025, April 2010.
    [37] Y. Kim, Y. Chon, and H. Cha, “Smartphone-based collaborative and autonomous radio fingerprinting,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42,
    pp. 112–122, Jan 2012.
    [38] J.-S. Leu, M.-C. Yu, and H.-J. Tzeng, “Improving indoor positioning precision by using received signal strength fingerprint and footprint based on weighted ambient wi-fi signals,” Computer Networks,
    vol. 91, pp. 329 – 340, 2015.
    [39] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen, “The gator tech smart house: a programmable pervasive space,” Computer, vol. 38, pp. 50–60, March 2005.
    [40] H. Noguchi, H. Fukada, T. Mori, H. Sanada, and T. Sato, “Object and human localization with zigbeebased sensor devices in a living environment,” in Radio Frequency Identification (M. B. I. Reaz, ed.),
    ch. 11, Rijeka: IntechOpen, 2013.
    [41] M. Marzencki, L. Zajiczek, B. Kaminska, and A. Sixsmith, “Device-less capacitive indoors localization and activity tracking system,” in Proceedings of the 8th IEEE International NEWCAS Conference
    2010, pp. 113–116, June 2010.
    [42] A. Popleteev, “Activity tracking and indoor positioning with a wearable magnet,” in Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and
    Proceedings of the 2015 ACM International Symposium on Wearable Computers, UbiComp/ISWC’15 Adjunct, (New York, NY, USA), pp. 253–256, ACM, 2015.
    [43] W. Ruan, Q. Z. Sheng, L. Yao, T. Gu, M. Ruta, and L. Shangguan, “Device-free indoor localization and tracking through human-object interactions,” in 2016 IEEE 17th International Symposium on A
    World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–9, June 2016.
    [44] S. Guo, H. Xiong, X. Zheng, and Y. Zhou, “Activity recognition and semantic description for indoor mobile localization,” Sensors (Basel, Switzerland), vol. 17, p. 649, Mar. 2017.
    [45] H.-Y. Noh, J.-H. Lee, S.-W. Oh, K.-S. Hwang, and S.-B. Cho, “Exploiting indoor location and mobile information for context-awareness service,” Information Processing & Management, vol. 48, no. 1, pp. 1 – 12, 2012.
    [46] J. Synnott, C. Nugent, and P. Jeffers, “Simulation of smart home activity datasets,” Sensors, vol. 15, no. 6, pp. 14162–14179, 2015.
    [47] E. Puybaret, “Sweet home 3d®.” Internet: https://sourceforge.net/projects/sweethome3d/, version 5.7 [Jul. 25, 2018].
    [48] muhtesemozcinar, “The 3d model of gym objects.” Internet: https://www.blendswap.com/blends/view/74269/, Jun. 9, 2014 [Jul. 25, 2018].

    QR CODE