簡易檢索 / 詳目顯示

研究生: 蔡嘉鴻
Chia-Hung Tsai
論文名稱: 並聯式機器人校準之研究
A STUDY ON THE CALIBRATION OF PARALLEL MANIPULATORS
指導教授: 蔡高岳
Kao-Yueh Tsai
口試委員: 王勵群
none
石伊蓓
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 97
中文關鍵詞: 並聯式機器人校準
外文關鍵詞: parallel manipulators, calibration
相關次數: 點閱:192下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

並聯式機器人的精度受到許多因素影響,其中以製造誤差及安裝誤差為動平台位置誤差之主要來源。為了使機器人之絕對精度提升,提高平台之機械加工、安裝精度為一方法,但會使成本提高許多。目前大多以機器人運動學參數之校準為主,以求出真實之幾何參數。
而參數校準又分兩類:一類為自我校準法;另一類為傳統校準法。自我校準法需安裝冗餘的內部感測器,或者對被動關節多加物理約束,因此在設計階段需考慮感測器之安裝,且增加感測器也會增加更多需要校準之參數。而傳統校準法需以外部量測設備量測動平台之數據,以運動學配合數值法求解運動學參數。
本文提出方法校準三種最常用之並聯式機器人,包含六自由度史都華型,六自由度Delta型及三自由度平移型Delta機器人,校準其運動學參數,對原設計參數進行補償,再以補償之真實參數進行正、反位移分析,證實此方法確實可提高其絕對精度。且探討其參數相依之現象,文中並對於並聯式機器人之設計、製作提出一些建議,以增加校準後之精度並降低以後校準之成本。


Manufacturing errors and assembling errors are two of the most important factors that affect the accuracy of a parallel manipulator. Upgrading the machining and assembling process, in theory, can reduce the errors, but the cost of a manipulator can significantly increase. Therefore, the approach of finding the real dimensions by calibration methods is commonly used to improve the accuracy of a manipulator.
There are two types of calibration: self-calibration and traditional -calibration. Self-calibration needs extra sensors or imposes some physical constraints on the passive joints, so it is more complicated and expensive to develop a self-calibration manipulator. Besides, there are more parameters to be calibrated. Traditional-calibration measures different positions and orientations of the moving platform and then determines the real link dimensions of a manipulator by solving a system of nonlinear equations.
This thesis proposes methods to calibrate three types of parallel manipulators: 6-DOF Stewart manipulators, 6-DOF Delta manipulators and 3-DOF Delta manipulators. The calibration results are evaluated using direct and inverse kinematics. It shows that the accuracy of the manipulator with the new dimensions is significantly improved. The effect of coupling of the variables in related equations is studied, and how to design a manipulator that is easier to be calibrated is also investigated.

中文摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 VII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 論文架構 5 第二章 六自由度史都華機器人 7 2.1 牛頓法(Newton-Raphson Method) 7 2.2 正位移分析 9 2.3 反位移分析 10 2.4 校準流程與方法 10 2.4.1 不含量測設備與固定平台座標系誤差之方法 11 2.4.2 含量測設備與固定平台座標系誤差之方法 14 2.5 數值範例 17 2.5.1 不含量測設備與固定平台座標系誤差之範例 18 2.5.2 含量測設備與固定平台座標系誤差之範例 21 2.5.3 含量測設備與固定平台座標系誤差並增加方程式之範例 24 2.5.4 含量測設備與固定平台座標系誤差並改變初始值之範例 30 2.6 討論及建議 33 2.7 小結 35 第三章 六自由度Delta機器人 37 3.1 正位移分析 37 3.2 反位移分析 39 3.3 校準流程與方法 40 3.3.1 不含量測設備與固定平台座標系誤差之方法 42 3.3.2 含量測設備與固定平台座標系誤差之方法 45 3.4 數值範例 47 3.4.1 不含量測設備與固定平台座標系誤差之範例 48 3.4.2 含量測設備與固定平台座標系誤差之範例 53 3.5 小結 56 第四章 三自由度平移型Delta機器人 58 4.1 正位移分析 59 4.2 反位移分析 60 4.3 校準流程與方法 60 4.3.1 不含量測設備與固定平台座標系誤差之方法 62 4.3.2 含量測設備與固定平台座標系誤差之方法 65 4.4 數值範例 66 4.4.1 不含量測設備與固定平台座標系誤差之範例 66 4.4.2 含量測設備與固定平台座標系誤差之範例 72 4.5 小結 78 第五章 結論與未來方向 79 參考文獻 82

[1]Mooring, B. W., Driels, M. R., Roth, Z. S., 1991, “Fundamentals of Manipulator Calibration,”
[2]Hanqi, Z., Lixin, L., 1996, “Self-Calibration of a Class of Parallel Manipulators,” Robotics and Automation, 1996. Proceedings., 1996 IEEE International Conference on, 22-28 Apr 1996, Vol. 2, pp. 994-999 vol.2.
[3]Hanqi, Z., 1997, “Self-Calibration of Parallel Mechanisms with a Case Study on Stewart Platforms,” IEEE Transactions on Robotics and Automation, 13(3), pp. 387-397.
[4]Ecorchard, G., Maurine, P., 2005, “Self-Calibration of Delta Parallel Robots with Elastic Deformation Compensation,” Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on, 2-6 Aug. 2005, pp. 1283-1288.
[5]Last, P., Budde, C., Bier, C., Hesselbach, J., 2005, “Hexa-Parallel-Structure Calibration by Means of Angular Passive Joint Sensors,” Mechatronics and Automation, 2005 IEEE International Conference, 2005, Vol. 3, pp. 1300-1305 Vol. 3.
[6]Last, P., Budde, C., Hesselbach, J., 2005, “Self-Calibration of the Hexa-Parallel-Structure,” Automation Science and Engineering, 2005. IEEE International Conference on, 1-2 Aug. 2005, pp. 393-398.
[7]Ryu, J., Rauf, A., 2001, “A New Method for Fully Autonomous Calibration of Parallel Manipulators Using a Constraint Link,” Advanced Intelligent Mechatronics, 2001. Proceedings. 2001 IEEE/ASME International Conference on, 2001, Vol. 1, pp. 141-146 vol.1.
[8]Ren, X. D., Feng, Z. R., Su, C. P., 2009, “Self-Calibration of Parallel Manipulators Using an Orientation Constraint,” Industrial Electronics and Applications, 2009. ICIEA 2009. 4th IEEE Conference on, 25-27 May 2009, pp. 2841-2844.
[9]Xiaodong, R., Zuren, F., Dewei, Y., Xu, W., Duanfeng, G., 2013, “Calibration of Parallel Robots Based on Orientation Constraint and Total Least Squares Approach,” Information and Automation (ICIA), 2013 IEEE International Conference on, 26-28 Aug. 2013, pp. 828-833.
[10]彭明輝, “高精度五軸運動之史都華平臺參數自我校正法則,” 國立清華大學動力機械工程學系, 91年08月.
[11]Masory, O., Wang, J., Zhuang, H., 1993, “On the Accuracy of a Stewart Platform. Ii. Kinematic Calibration and Compensation,” Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference on, 2-6 May 1993, pp. 725-731 vol.1.
[12]Lintott, A. B., Dunlop, G. R., 1997, “Parallel Topology Robot Calibration,” Robotica, 15(04), pp. 395-398.
[13]Wen-jia, C., Ying-zi, W., Yong-fa, Q., Ming-yang, Z., 2002, “Genetic Algorithm Based Parameter Identification for Parallel Manipulators,” Intelligent Control and Automation, 2002. Proceedings of the 4th World Congress on, 2002, Vol. 2, pp. 1200-1204 vol.2.
[14]Daney, D., Papegay, Y., Neumaier, A., 2004, “Interval Methods for Certification of the Kinematic Calibration of Parallel Robots,” Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on, April 26-May 1, 2004, Vol. 2, pp. 1913-1918 Vol.2.
[15]Liu, Y., Liang, B., Li, C., Xue, L., Hu, S., Jiang, Y., 2007, “Calibration of a Steward Parallel Robot Using Genetic Algorithm,” Mechatronics and Automation, 2007. ICMA 2007. International Conference on, 5-8 Aug. 2007, pp. 2495-2500.
[16]Ying, B., Smith, J. C., Hanqi, Z., Dali, W., 2008, “Calibration of Parallel Machine Tools Using Fuzzy Interpolation Method,” Technologies for Practical Robot Applications, 2008. TePRA 2008. IEEE International Conference on, 10-11 Nov. 2008, pp. 56-61.
[17]Dali, W., Ying, B., 2012, “Calibration of Stewart Platforms Using Neural Networks,” Evolving and Adaptive Intelligent Systems (EAIS), 2012 IEEE Conference on, 17-18 May 2012, pp. 170-175.
[18]Dayong, Y., Junwei, H., 2005, “Kinematic Calibration of Parallel Robots,” Mechatronics and Automation, 2005 IEEE International Conference, 29 July-1 Aug. 2005, Vol. 1, pp. 521-525 Vol. 1.
[19]Zhang, Y., Gao, F., 2007, “A Calibration Test of Stewart Platform,” Networking, Sensing and Control, 2007 IEEE International Conference on, 15-17 April 2007, pp. 297-301.
[20]Dayong, Y., Dacheng, C., 2008, “Error Modeling and Kinematic Calibration of Parallel Robots,” Control and Decision Conference, 2008. CCDC 2008. Chinese, 2-4 July 2008, pp. 2162-2167.
[21]Dayong, Y., Xiwei, S., Sheng, L., 2009, “Kinematic Calibration of Parallel Robots for Docking Mechanism Motion Simulation,” Mechatronics and Automation, 2009. ICMA 2009. International Conference on, 9-12 Aug. 2009, pp. 3927-3932.
[22]Last, P., Hesselbach, J., Plitea, N., 2005, “An Extended Inverse Kinematic Model of the Hexa-Parallel-Robot for Calibration Purposes,” Mechatronics and Automation, 2005 IEEE International Conference, 2005, Vol. 3, pp. 1294-1299 Vol. 3.
[23]Jiangping, M., Yanbin, N., Yi, L., Liangan, Z., Fengcheng, L., 2009, “The Error Modeling and Accuracy Synthesis of a 3-Dof Parallel Robot Delta-S,” Information and Automation, 2009. ICIA '09. International Conference on, 22-24 June 2009, pp. 289-294.

無法下載圖示 全文公開日期 2021/07/13 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE