簡易檢索 / 詳目顯示

研究生: 陳安育
An - Yu Chen
論文名稱: 金奈米粒子/氧化矽/鐵鉑奈米複合物於表面增強拉曼光譜偵測之應用
Nanohybrids of FePt@SiO2@Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy Detection
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 劉定宇
Ting-Yu Liu
陳詩芸
Shih-Yun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 60
中文關鍵詞: 金奈米粒子氧化矽鐵鉑表面增強拉曼光譜
外文關鍵詞: gold nanoparticles, SiO2, iron/platinum nanoparticle, surface-enhanced Raman scattering
相關次數: 點閱:303下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在有機相中合成出具有磁性的FePt奈米粒子,並將其表面以SiO2包覆,接著再加入N-[3-(Trimethoxysilyl)propyl]ethylenediamine,藉此合成出表面帶正電且溶於水中的FePt@SiO2,再加入以檸檬酸鈉熱還原法製備表面帶負電之金奈米粒子 (gold nanoparticles,Au NPs),經由兩者之間的靜電作用力使金奈米粒子能吸附於表面並且有良好的分散性,而製備出金奈米粒子/氧化矽/鐵鉑奈米複合物,FePt@SiO2@Au能夠提升對於微生物的接觸面積進而提高表面增強拉曼光譜 (surface-enhanced Raman scattering,SERS)偵測的靈敏度,可用於偵測小分子腺嘌呤 (adenine)、微生物金黃色葡萄球菌 (S. aureus)之SERS訊號,最後藉由改變金奈米粒子與氧化矽/鐵鉑之間的比例以及表面改質之藥劑的濃度,可控制金奈米粒子的粒子間距,藉此尋找最佳SERS增強效應,以應用於生物檢測。


    In this research, iron/platinum nanoparticle was functionalized by coating SiO2 and amino-silane. Simultaneously, the citrate-capped gold nanoparticles (AuNPs) were produced through the traditional citrate thermal reduction method. The resulting AuNPs were then adsorbed to FePt@SiO2 due to electrostatic interaction. FePt@SiO2@Au exhibited higher surface-area between the substrate and microorganisms, thus enhancing surface-enhanced Raman scattering (SERS) sensitivity. FePt@SiO2@Au substrate can be widely used in SERS detection of small molecules (adenine) and microorganisms (S. aureus). Furthermore, this study demonstrated that the morphology and particle spacing of FePt@SiO2@Au can be controlled through the concentration of N-[3-(Trimethoxysilyl)propyl]ethylenediamine and the ratio of the proportion between AuNPs and FePt@SiO2, thereby optimizing the SERS enhancement effect. Thus these nanohybrids can be used for biosensing.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第 1 章 緒論 (Introduction) 1 研究背景 1 研究目的 2 第 2 章 文獻回顧 (Literature Review) 3 2.1鐵/鉑奈米粒子 3 2.1.1鐵/鉑奈米粒子簡介 3 2.1.2鐵/鉑奈米粒子合成方法 3 2.1.3鐵/鉑奈米粒子表面改質 5 2.2二氧化矽 6 2.2.1二氧化矽合成 6 2.2.2二氧化矽表面改質 7 2.3金奈米粒子 9 2.3.1金奈米粒子簡介 9 2.3.2金奈米粒子合成 9 2.3.3金奈米粒子結構 11 2.4拉曼光譜 12 2.4.1拉曼光譜的歷史 12 2.4.2拉曼光譜的原理 13 2.4.3表面增強拉曼光譜簡介 15 2.4.4表面增強拉曼效應原理 16 第 3 章 實驗(experiment) 19 3.1實驗材料 19 3.2實驗設備 20 3.3實驗流程 22 3.4實驗原理及方法 23 3.4.1Au NPs合成 23 3.4.2 FePt NPs合成 24 3.4.3 FePt@SiO2合成 26 3.4.4 FePt@SiO2表面改質 27 3.4.5 FePt@SiO2@Au合成 29 3.4.6表面增強拉曼光譜實驗 31 3.4.7儀器分析 34 第 4 章 結果與討論(Results and Discussion) 36 4.1 Au NPs 36 4.2 FePt NPs 38 4.3 FePt@SiO2 42 4.4 FePt@SiO2-N 43 4.5 FePt@SiO2@Au 48 第 5 章 結論 (Conclusion) 55 參考文獻(Reference) 56

    [1] B. Rellinghaus, S. Stappert, M. Acet, and E. F. Wassermann, "Magnetic properties of FePt nanoparticles," Journal of magnetism and magnetic materials, vol. 266, pp. 142-154, 2003.
    [2] S. Sun, S. Anders, T. Thomson, J. Baglin, M. F. Toney, H. F. Hamann, C. B. Murray, and B. D. Terris, "Controlled synthesis and assembly of FePt nanoparticles," The Journal of Physical Chemistry B, vol. 107, pp. 5419-5425, 2003.
    [3] K. E. Elkins, T. S. Vedantam, J. Liu, H. Zeng, S. Sun, Y. Ding, and Z. L. Wang, "Ultrafine FePt nanoparticles prepared by the chemical reduction method," Nano letters, vol. 3, pp. 1647-1649, 2003.
    [4] B. Bian, W. Xia, J. Du, J. Zhang, J. P. Liu, Z. Guo, and A. Yan,"Growth mechanisms and size control of FePt nanoparticles synthesized using Fe (Co) x (x< 5)-oleylamine and platinum (II) acetylacetonate," Nanoscale, vol. 5, pp. 2454-2459, 2013.
    [5] W. Beck Jr, C. G. Souza, T. L. Silva, M. Jafelicci Jr, and L. C. Varanda, "Formation mechanism via a heterocoagulation approach of FePt nanoparticles using the modified polyol process," The Journal of Physical Chemistry C, vol. 115, pp. 10475-10482, 2011.
    [6] Y.-N. Hsu, S. Jeong, D. E. Laughlin, and D. N. Lambeth, "The effects of Ag underlayer and Pt intermediate layers on the microstructure and magnetic properties of epitaxial FePt thin films," Journal of magnetism and magnetic materials, vol. 260, pp. 282-294, 2003.
    [7] D. C. Lee, F. V. Mikulec, J. M. Pelaez, B. Koo, and B. A. Korgel, "Synthesis and magnetic properties of silica-coated FePt nanocrystals," The Journal of Physical Chemistry B, vol. 110, pp. 11160-11166, 2006.
    [8] A. Guerrero‐Martínez, J. Pérez‐Juste, and L. M. Liz‐Marzán, "Recent progress on silica coating of nanoparticles and related nanomaterials," Advanced Materials, vol. 22, pp. 1182-1195, 2010.
    [9] A. Buckley and M. Greenblatt, "The sol-gel preparation of silica gels," Journal of Chemical Education, vol. 71, p. 599, 1994.
    [10] R. Sardar, T. B. Heap, and J. S. Shumaker-Parry, "Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach," Journal of the American Chemical Society, vol. 129, pp. 5356-5357, 2007.
    [11] H. Mohammad-Beigi, S. Yaghmaei, R. Roostaazad, and A. Arpanaei, "Comparison of different strategies for the assembly of gold colloids onto Fe3O4@ SiO2 nanocomposite particles," Physica E: Low-dimensional Systems and Nanostructures, vol. 49, pp. 30-38, 2013.
    [12] M. A. Hayat, Colloidal gold: principles, methods, and applications: Elsevier, 2012.
    [13] M. Faraday, "The Bakerian lecture: experimental relations of gold (and other metals) to light," Philosophical Transactions of the Royal Society of London, vol. 147, pp. 145-181, 1857.
    [14] K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles," Applied Spectroscopy, vol. 56, pp. 150-154, 2002.
    [15] C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T.R. Huser, P. Nordlander, N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano Letters, vol. 5, pp. 1569-1574, 2005.
    [16] C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence," Analytical chemistry, vol. 77, pp. 3261-3266, 2005.
    [17] V. Amendola and M. Meneghetti, "Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles," Physical chemistry chemical physics, vol. 11, pp. 3805-3821, 2009.
    [18] G. Glaspell, V. Abdelsayed, K. M. Saoud, and M. S. El-Shall, "Vapor-phase synthesis of metallic and intermetallic nanoparticles and nanowires: magnetic and catalytic properties," Pure and applied chemistry, vol. 78, pp. 1667-1689, 2006.
    [19] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, "Turkevich method for gold nanoparticle synthesis revisited," The Journal of Physical Chemistry B, vol. 110, pp. 15700-15707, 2006.
    [20] J. Turkevich, P. C. Stevenson, and J. Hillier, "A study of the nucleation and growth processes in the synthesis of colloidal gold," Discussions of the Faraday Society, vol. 11, pp. 55-75, 1951.
    [21] J. R. Ferraro, Introductory raman spectroscopy: Academic press, 2003.
    [22] M. Fleischmann, P. J. Hendra, and A. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chemical Physics Letters, vol. 26, pp. 163-166, 1974.
    [23] W. E. Doering and S. Nie, "Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement," The Journal of Physical Chemistry B, vol. 106, pp. 311-317, 2002.
    [24] N. Felidj, J. Aubard, G. Levi, J. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Applied Physics Letters, vol. 82, pp. 3095-3097, 2003.
    [25] S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," science, vol. 275, pp. 1102-1106, 1997.
    [26] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and Michael S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Physical review letters, vol. 78, p. 1667, 1997.
    [27] A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chem. Soc. Rev., vol. 27, pp. 241-250, 1998.
    [28] D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 84, pp. 1-20, 1977.
    [29] M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," Journal of the American Chemical Society, vol. 99, pp. 5215-5217, 1977.
    [30] E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, "Surface enhanced Raman scattering enhancement factors: a comprehensive study," The Journal of Physical Chemistry C, vol. 111, pp. 13794-13803, 2007.
    [31] A. J. Haes and R. P. Van Duyne, "A unified view of propagating and localized surface plasmon resonance biosensors," Analytical and Bioanalytical Chemistry, vol. 379, pp. 920-930, 2004.
    [32] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," The Journal of Physical Chemistry B, vol. 107, pp. 668-677, 2003.
    [33] E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects: Elsevier, 2008.
    [34] H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering," Physical review letters, vol. 83, p. 4357, 1999.
    [35] J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, "Probing the structure of single-molecule surface-enhanced Raman scattering hot spots," Journal of the American Chemical Society, vol. 130, pp. 12616-12617, 2008.
    [36] C. S. Kumar, Raman spectroscopy for nanomaterials characterization: Springer Science & Business Media, 2012.
    [37] E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," The Journal of chemical physics, vol. 120, pp. 357-366, 2004.
    [38] S. Link and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," The Journal of Physical Chemistry B, vol. 103, pp. 8410-8426, 1999.
    [39] M. Aslam, L. Fu, S. Li, and V. P. Dravid, "Silica encapsulation and magnetic properties of FePt nanoparticles," Journal of colloid and interface science, vol. 290, pp. 444-449, 2005.
    [40] C. Xu, K. Xu, H. Gu, X. Zhong, Z. Guo, R. Zheng, X. Zhang, and B. Xu, "Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins," Journal of the American Chemical Society, vol. 126, pp. 3392-3393, 2004.
    [41] H. Gu, R. Zheng, X. Zhang, and B. Xu, "Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles," Journal of the American Chemical Society, vol. 126, pp. 5664-5665, 2004.
    [42] S.-M. Lai, T.-Y. Tsai, C.-Y. Hsu, J.-L. Tsai, M.-Y. Liao, and P.-S. Lai, "Bifunctional silica-coated superparamagnetic FePt nanoparticles for fluorescence/MR dual imaging," Journal of Nanomaterials, vol. 2012, p. 5, 2012.
    [43] M. Hu, S. Noda, T. Okubo, Y. Yamaguchi, and H. Komiyama, "Structure and morphology of self-assembled 3-mercaptopropyltrimethoxysilane layers on silicon oxide," Applied surface science, vol. 181, pp. 307-316, 2001.
    [44] J. A. Howarter and J. P. Youngblood, "Optimization of silica silanization by 3-aminopropyltriethoxysilane," Langmuir, vol. 22, pp. 11142-11147, 2006.
    [45] T. Jesionowski, F. Ciesielczyk, and A. Krysztafkiewicz, "Influence of selected alkoxysilanes on dispersive properties and surface chemistry of spherical silica precipitated in emulsion media," Materials Chemistry and Physics, vol. 119, pp. 65-74, 2010.

    無法下載圖示 全文公開日期 2020/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE