簡易檢索 / 詳目顯示

研究生: 林瑩秀
Ying-Xiu Lin
論文名稱: 探討化學機械拋光用於改善氧化鋅異質磊晶於雲母可撓性基板之平坦度
Study on chemical mechanical polishing for improving the planarization of Zinc oxide on flexible mica substrate
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 陳士勛
Shih-Hsun Chen
丘群
Chun Chiu
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 84
中文關鍵詞: 化學機械拋光氧化鋅白雲母可撓性基板
外文關鍵詞: Chemical mechanical polishing, Zinc oxide, Muscovite, flexible substrate
相關次數: 點閱:216下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著科技的發展,大眾對於電子產品的需求越來越多樣化,其中具備可撓特性之電子產品是近年來的發展趨勢,為了使傳統的電子元件擁有可撓的功能,大多利用可撓性基板取代傳統硬基板,而因為白雲母(Muscovite)具有二維晶格結構、可撓透明且能承受高溫與強酸鹼的環境,性質優於一般軟性基板,故白雲母非常適合作為可撓式之基板。
在本實驗中,由於氧化鋅(Zinc Oxide, ZnO)在光電元件的應用相當廣泛,並且能夠用於氮化鎵(Gallium Nitride, GaN)異質磊晶在其他基板上的緩衝層,具有高崩潰電壓、高激子結合能等優點,因此選用氧化鋅作為沉積於白雲母基板上之功能性氧化物薄膜。其中薄膜製程是利用濺鍍製程在雲母可撓性基板上長出氧化鋅晶種層,使其為單晶生長的方向以及成核位置,接著使用水熱法生長氧化鋅單晶薄膜。水熱法是種快速的磊晶方法,但同時也犧牲了表面的平坦度,若沒有良好的表面平坦度,會對後續薄膜磊晶之品質造成不好的影響,因此本實驗主要探討化學機械拋光應用於改善在可撓式白雲母基板上水熱生長的氧化鋅薄膜之表面平坦化,而化學機械拋光(Chemical Mechanical Polishing, CMP)主要是一種以化學反應結合機械研磨來達到晶圓全面平坦化的半導體製程。
由於以水熱法製備之氧化鋅薄膜具有可撓之特性(軟基板),但是每片氧化鋅薄膜磊晶品質較難均一化,因此本研究先將商用氧化鋅基板(硬基板)進行化學機械拋光後,再參考其數據針對水熱氧化鋅進行化學機械拋光的實驗。
首先為了確認水熱氧化鋅適合在何種拋光墊下進行化學機械拋光,透過不織布型之長纖維結構拋光墊Suba800與發泡固化型之高分子結構拋光墊IC1010進行水熱氧化鋅的化學機械拋光實驗,結果顯示因IC1010對拋光液的涵養性能較Suba800低,因此可以使晶圓與拋光墊之間的拋光液較容易保持在拋光墊上,讓拋光時呈現潤滑的工作模式,對於水熱氧化鋅薄膜來說,此模式能夠讓表面較不會有剝離的現象,因此後續實驗將使用IC1010作為本實驗的拋光墊。
接著進行商用與水熱氧化鋅基板的化學機械拋光,從實驗結果發現在相同的下壓力下,不管是商用單晶還是水熱氧化鋅,都在轉速為20rpm時得到最佳的表面粗糙度,因為在轉速較低的情況下,拋光液在拋光墊上停留之容量與時間比較多,可以讓晶片與拋光墊之間保持在潤滑模式,因此水熱氧化鋅適合較低的轉速與下壓力進行化學機械拋光,最後從紫外-可見光譜儀量測光線之穿透率,從結果觀察到經過化學機械拋光後之表面在可見光波段(400-700nm)的穿透率皆有上升幅度。


With the advance of science and technology, the public demand for electronic products is becoming more variety, among which electronic products with flexible characteristics are the trend of development in recent years. In order to make traditional electronic components have flexible property, most of them use flexible substrate to replace traditional hard substrate, and because Muscovite has two-dimensional lattice structure, flexible, transparent, high temperature and chemical stability, and its properties are better than those of general
soft substrates, so Muscovite is very suitable for flexible substrate.
In this study, Zinc oxide(ZnO) was selected as a functional oxide film for deposition on Muscovite substrate because it is widely used in optoelectronic device and can be used as a buffer layer for gallium nitride heteroepitaxial on other substrates with high breakdown voltage and high exciton binding energy. The sputtering process is used to grow ZnO seeding layers on Muscovite substrate in the direction of single crystal growth and nucleation location, followed by hydrothermal growth of ZnO single crystal film. Therefore, this experiment is to study the chemical mechanical polishing to improve the surface planarization of hydrothermal grown ZnO film on flexible Muscovite substrate. The chemical mechanical polishing(CMP) is a semi-conductor process that combines chemical
reaction with mechanical polishing to achieve full wafer planarization.
Since the ZnO film was prepared by hydrothermal method, but it is difficult to uniform the epitaxial quality of each ZnO film. Therefore, before the hydrothermal ZnO conducts chemical mechanical polishing, the commercial ZnO substrate should be polished first and the data should be referred to. In order to confirm which polishing pad is suitable for the hydrothermal ZnO, a felted fiber structured polishing pad, Suba800, and a polymer structured polishing pad, IC1010, were used for the chemical mechanical polishing of hydrothermal ZnO. The results show that IC1010 has a lower slurry holding than Suba800, so it is easier to keep the slurry between the wafer and polishing pad, and it gives a
lubrication regime during polishing.
Then, chemical mechanical polishing of commercial and hydrothermal ZnO substrate was carried out. It was found that the best surface roughness was obtained at 20 rpm for both commercial single crystal and hydrothermal ZnO at the same down force, because at lower rotation, the slurry stays on the polishing pad for more volume and time, thus keeping the wafer and the pad in lubrication regime. Thus, hydrothermal ZnO is suitable for chemical mechanical polishing at lower rotation and down force. Finally, the transmittance of light was measured by UV-Vis spectrometer, and it was observed that the transmittance of the surface in the visible wavelength (400-700nm) increased after chemical mechanical
polishing.

誌謝 I 摘要 II Abstract IV 目錄 VI 圖目錄 IX 表目錄 XII 第一章 1 1.1 前言 1 1.2 研究動機 2 第二章 4 2.1 可撓式電子元件 4 2.2 白雲母基板 5 2.3 氧化鋅基本性質與應用 7 2.4 水熱法(Hydrothermal method) 9 2.5 化學機械拋光(Chemical mechanical polishing, CMP) 10 2.5.1 拋光墊(Polishing pad) 15 2.5.2 拋光液(Slurry) 17 2.5 文獻回顧總結 19 第三章 20 3.1 實驗流程與參數規劃 20 3.1.1 實驗流程圖 20 3.1.2 實驗參數規劃 21 3.1.3水熱氧化鋅化學機械拋光流程圖 22 3.2 實驗設備 23 3.2.1 化學機械拋光機台 23 3.2.2 酸鹼值檢測計 24 3.2.3 電熱板磁攪拌器 24 3.3 實驗耗材 25 3.3.1 拋光墊 25 3.3.2 拋光液 26 3.3.3 鑽石修整環 26 3.3.4 陶瓷工作環 27 3.3.5 固態蠟 27 3.3.6 晶圓治具(Template) 28 3.4 實驗分析儀器 28 3.4.1 表面干涉儀(Talysurf CCI-Lite) 28 3.4.2 X光繞射儀(X- ray diffraction, XRD) 30 3.4.3 紫外-可見光譜量測儀(UV-visible spectroscopy) 31 3.4.4 精密電子天秤 31 3.4.5 奈米壓痕機械性質分析儀 32 第四章 結果與討論 33 4.1 氧化鋅基板晶體結構與材料性質分析 34 4.1.1 晶體結構分析-XRD 34 4.1.2 材料機械性質分析-Nanoindentation 36 4.2 水熱氧化鋅之化學機械拋光(實驗A) 37 4.2.1 兩種拋光墊對於材料移除率分析 38 4.2.2 拋光液分析 40 4.3 商用氧化鋅之化學機械拋光(實驗B) 42 4.3.1 材料移除率分析 42 4.3.2 表面粗糙度分析 44 4.4 水熱氧化鋅參數整合分析(實驗C) 45 4.4.1 材料移除率分析 45 4.4.2 表面粗糙度分析 47 4.4.3 綜合參數之實驗分析 53 4.4.4 化學機械拋光前後之光學特性分析 55 第五章 結論與未來展望 57 5.1研究結果與總結 57 5.2未來展望 58 參考文獻 59 附錄A 單晶氧化鋅表面形貌與粗糙度 62 附錄B 水熱氧化鋅表面形貌與粗糙度 65

[1] Chu Y-H, "Van der Waals oxide heteroepitaxy," npj Quantum Materials, V. 2, No. 1. 2017.
[2] Zhong G, Li J, "Muscovite mica as a universal platform for flexible electronics," Journal of Materiomics, V. 6, No. 2. 2020, pp. 455-7.
[3] Gao W, Zhu Y, Wang Y, Yuan G, Liu J-M, "A review of flexible perovskite oxide ferroelectric films and their application," Journal of Materiomics, V. 6, No. 1. 2020, pp. 1-16.
[4] Corzo D, Tostado-Blázquez G, Baran D, "Flexible Electronics: Status, Challenges and Opportunities," Frontiers in Electronics, V. 1. 2020.
[5] Jin DW, Ko YJ, Kong DS, Kim HK, Ha J-H, Lee M, et al., "Thermal stability and Young's modulus of mechanically exfoliated flexible mica," Current Applied Physics, V. 18, No. 12. 2018, pp. 1486-91.
[6] Yen M, Bitla Y, Chu Y-H, "van der Waals heteroepitaxy on muscovite," Materials Chemistry and Physics, V. 234. 2019, pp. 185-95.
[7] Nathan A, Ahnood A, Cole MT, Sungsik L, Suzuki Y, Hiralal P, et al., "Flexible Electronics: The Next Ubiquitous Platform," Proceedings of the IEEE, V. 100, No. Special Centennial Issue. 2012, pp. 1486-517.
[8] Ma C-H, Lin J-C, Liu H-J, Do TH, Zhu Y-M, Ha TD, et al., "Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics," Applied Physics Letters, V. 108, No. 25. 2016.
[9] Bitla Y, Chu Y-H, "MICAtronics: A new platform for flexible Xtronics," FlatChem, V. 3. 2017, pp.26-42
[10] Nasiri M, Rozati SM, "Muscovite mica as a flexible substrate for transparent conductive AZO thin films deposited by spray pyrolysis," Materials Science in Semiconductor Processing, V. 81. 2018, pp. 38-43.
[11] Zhang G, Wei Z, Ferrell R, "Elastic modulus and hardness of muscovite and rectorite determined by nanoindentation," Applied Clay Science, V. 43, No. 2. 2009, pp. 271-81.
[12] Yao T, Hong S-K (eds.), Advances in materials research, "oxide and nitrides semiconductors, processing, properties and application, " Springer, New York.
[13] Borysiewicz MA, "ZnO as a Functional Material, a Review," Crystals, V. 9, No. 10. 2019.
[14] Ribut SH, Che Abdullah CA, Mohammad Yusoff MZ, "Investigations of structural and optical properties of zinc oxide thin films growth on various substrates," Results in Physics, V. 13. 2019.
[15] 曾心如, "以水熱法在異質基板上成長氧化鋅之研究, " 國立交通大學材料科學與工程學系碩士論文, 2013.
[16] Kim M, Seo J-H, Singisetti U, Ma Z, "Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond," Journal of Materials Chemistry C, V. 5, No. 33. 2017, pp. 8338-54.
[17] Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, et al., "Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method," Journal of Crystal Growth, V. 260, No. 1-2. 2004, pp. 166-70.
[18] Ammaih Y, Lfakir A, Hartiti B, Ridah A, Thevenin P, Siadat M, "Structural, optical and electrical properties of ZnO:Al thin films for optoelectronic applications," Optical and Quantum Electronics, V. 46, No. 1. 2013, pp. 229-34.
[19] Bhandari S.C., Sharma S, Shrestha S. P., Joshi L. P. "Preparation of ZnO Thin Films by Hydrothermal Method using Zn Acetate," Imperial Journal of Interdisciplinary Research, V. 3.2017
[20] Zeng Y, Zhao Y, Jiang Y, "Effect of KrF excimer laser irradiation on the surface changes and photoelectric properties of ZnO single crystal," Journal of Alloys and Compounds, V. 671. 2016, pp. 579-84.
[21] Ullah S., Ahmed F., Badshah A., Ali Altaf A., Raza R., Lal B. and Hussain R. "Solvothermal Preparation of ZnO Nanorods as Anode Material for Improved Cycle Life Zn/AgO Batteries," PloS one,"2013
[22] Vasnyov, S., "Investigation of the correlation of electronic and dynamic dislocation properties in ZnO".Halle-Wittenberg Univ., Halle (Germany).,2005
[23] Hu X, Song Z, Liu W, Qin F, Zhang Z, Wang H, "Chemical mechanical polishing of stainless steel foil as flexible substrate," Applied Surface Science, V. 258, No. 15. 2012, pp. 5798-802.
[24] Fu W-E, Lin T-Y, Chen M-K, Chen C-CA, "Surface qualities after chemical–mechanical polishing on thin films," Thin Solid Films, V. 517, No. 17. 2009, pp. 4909-15.
[25] Zhou Y, Pan G, Shi X, Xu L, Zou C, Gong H, et al., "XPS, UV–vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP)," Applied Surface Science, V. 316. 2014, pp. 643-8.
[26] Q. Luo, S. Ramarajan and S. V. Babu, "Modification of the Preston equation for the chemical–mechanical polishing of copper", Thin Solid Films, vol. 335, pp. 160-167, 1998.
[27] Luo J. and Dornfeld D. A. Material Removal Mechanism in Chemical Mechanical Polishing: Theory and Modeling”. IEEE Trans. Semiconductor Manufacturing, 14, 2, 2001, pp. 112-133.
[28] Zhang Z, Liu J, Hu W, Zhang L, Xie W, Liao L, "Chemical mechanical polishing for sapphire wafers using a developed slurry," Journal of Manufacturing Processes, V. 62. 2021, pp. 762-71.
[29] 王詩堯, "拋光墊性能分析於淺溝槽隔離化學機械拋光製程研究",國立台灣科技大學機械工程學系碩士論文, 2018
[30] Mulodowney, Gregory P., David B. James. , "Characterization of CMP Pad Surface Texture and Pad-Wafer Contact, " MRS Online Proceedings Library Archive 816,2004
[31] 蔡進晃, "鑽石修整器修整特性對化學機械研磨製程的細微刮傷缺陷之影響",國立交通大學工學院半導體材料與製程設備學程碩士論文, 2013
[32] Kim H, Hong S, Shin C, Jin Y, Lim DH, Kim J-y, et al., "Investigation of the pad-conditioning performance deterioration in the chemical mechanical polishing process," Wear, V. 392-393. 2017, pp. 93-8.
[33] 溫禪儒, "單晶矽與藍寶石晶圓化學機械平坦化之拋光墊有效壽命指標分析研究",國立台灣科技大學機械工程學系碩士論文, 2014
[34] 王同慶,韓桂全,趙德文,何永勇,路新春, "拋光墊特性及其對300mm鑄造銅化學機械拋光效果的影響研究",摩擦學學報,V.33, No. 4. 2013
[35] Krisfnan, Mahadevaiyer, Jakub W. Nalaskowski, and Lee M. Cook. "Chemical Mechanical Planarization : Slurry Chemistry, Materials, and Mechanisms," Chemical review 110.1:178-204, 2009
[36] Seo J, Paik U, "Preparation and characterization of slurry for chemical mechanical planarization (CMP)," Advances in Chemical Mechanical Planarization (CMP), 2016, pp. 273-98.
[37] Lucca DA, Hamby DW, Klopfstein MJ, Cantwell G, Wetteland CJ, Tesmer JR, et al., "Effects of Polishing on the Photoluminescence of Single Crystal ZnO," CIRP Annals, V. 50, No. 1. 2001, pp. 397-400.
[38] Lee W-S, Choi G-W, Seo Y-J, "Surface planarization of ZnO thin film for optoelectronic applications," Microelectronics Journal, V. 40, No. 2. 2009, pp. 299-302.
[39] Gupta S, Kumar P, Chakkaravathi AA, Craciun D, Singh RK, "Investigation of chemical mechanical polishing of zinc oxide thin films," Applied Surface Science, V. 257, No. 13. 2011, pp. 5837-43.
[40] Zhang K, Zhang T, Wang F, Yuan Y, Li Y, "Exploration on chemical mechanical planarization of ZnO functional thin films for novel devices," Microelectronic Engineering, V. 101. 2013, pp. 37-41.
[41] Pandey, S. Dalal, S. Dutta, A. Dixit,"Structural characterization of polycrystalline thin films by X-ray diffraction techniques"J Mater Sci-Mater El (2021)
[42] 陳鼎鈞, "單晶碳化矽基板之鑽石研光與化學機械拋光平坦化製程研究",國立台灣科技大學機械工程學系碩士論文, 2015
[43] Thakurta D G, Borst C L, Schwendeman D W, Gutmann R J, Gill W N. Pad porosity, compressibility and slurry delivery effects in chemical-mechanical planarization: modeling and experiments. Thin Solid Films 366(1–2): 181–190 (2000)

QR CODE