簡易檢索 / 詳目顯示

研究生: 吳軍毅
Jyun-Yi Wu
論文名稱: 以密度泛函理論結合微觀動力學研究在二氧化釕(110)上之氨氣熱脫附與氧化反應
Theoretical Investigation of Ammonia Thermal Desorption and Oxidation on RuO2(110): A Combined DFT and Microkinetic Study
指導教授: 江志強
Jyh-chiang Jiang
口試委員: 林聖賢
Sheng-hsien Lin
魏金明
Ching-ming Wei
何嘉仁
Jia-jen Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 82
中文關鍵詞: 密度泛函理論微觀動力學氨氣氧化反應二氧化釕(110)熱程控脫附儀
外文關鍵詞: DFT, Microkinetic, ammonia oxidation, RuO2(110), TDS
相關次數: 點閱:221下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本篇論文結合微觀動力學模型與密度泛函理論(DFT)模擬出在二氧化釕(110)表面上的氨、氧與水之熱程控脫附儀(TDS)圖譜,以及在不同條件下的氨氣氧化反應之產物(氮、一氧化氮、一氧化二氮)生成速率。在計算熱程控脫附儀圖譜中,我們考慮了各種氨、氧與水之表面覆蓋率去計算隨著溫度上升的脫附速率變化情形。此外我們也藉由統計熱力學所計算出之指前因子(pre-exponential factor)以討論過去假設其為1013 (秒-1)所造成的影響。在氨氣氧化反應部分,我們考慮含有19條基礎反應的模型,其中包括了吸附、脫附、以及表面反應。我們藉由碰撞理論求得吸附及脫附反應之速率常數,並以過渡狀態理論求得表面反應之速率常數。考慮在不同氧氨比、溫度、以及覆蓋率下,由微觀動力學分析指出二氧化釕(110)表面對於氨氣氧化反應具有相當好的觸媒活性以及含氮產物的選擇率,此外我們的計算結果也與過去已知的實驗結果相吻合。 


We combined the DFT calculations and microkinetic modeling to simulate the TDS spectra of NH3, O2, and H2O and predict the formation rates of ammonia oxidation products including N2, NO, and N2O with various conditions on the RuO2(110) surface. In the TDS simulation, we considered several coverages of all the three adsorbents to calculate the desorption rate which is function of temperature. Especially, we examined the role of pre-exponential factors which were determined with statistic thermodynamic treatment or were set as convention assumption of 1013 s-1. In the study of ammonia oxidation, our reaction model contained 19 elementary reaction steps including adsorption, surface reaction, and desorption. The adsorption/desorption rate constants were treated with collision theory, and others were treated with transition state theory. The pre-exponential factors are also determined with the statistic thermodynamic treatment in this part. Considered O2/NH3 ratio, temperature, coverage effects, our microkinetic analysis indicated that RuO2(110) exhibits very good catalytic activity and selectivity to N-containing products for ammonia oxidation. The calculations are in good agreement with available experiments.

1 Introduction 1 1.1 Thermal Desorption Spectroscopy 1 1.2 Ammonia Oxidation 3 1.3 RuO2(110) 5 1.4 Microkinetic Modeling 6 1.5 About This Work 8 2 Methodology 9 2.1 Theoretical Background 9 2.2 Quantum Chemical Calculation 14 2.3 Thermodynamic Constants 17 2.4 Microkinetic Modeling 19 2.5 TDS Spectra 21 3 Theoretical Study of NH3, O2, and H2O Thermal Desorption on stoichiometry RuO2(110) 22 3.1 NH3 Desorption 22 3.2 O2 Desorption 28 3.3 H2O Desorption 35 3.4 The Pre-exponential Factor 40 3.5 Conclusion 42 4 Theoretical Investigation of Selective Ammonia Oxidation on RuO2(110) 43 4.1 The Reaction Scheme 44 4.2 The Microkinetic Results and Discussion 59 4.3 Conclusion 69 5 Summary 71 Reference 73 Appendices 76 

1. Wang, Y.; Jacobi, K.; Schone, W. D.; Ertl, G. J Phys Chem B 2005, 109 (16), 7883-7893.
2. Lobo, A.; Conrad, H. Surf Sci 2003, 523, 279-286.
3. Kim, Y. D.; Seitsonen, A. P.; Wendt, S.; Wang, J.; Fan, C.; Jacobi, K.; Over, H.; Ertl, G. J Phys Chem B 2001, 105 (18), 3752-3758.
4. Perez-Ramirez, J.; Lopez, N.; Kondratenko, E. V. J Phys Chem C 2010, 114 (39), 16660-16668.
5. Redhead, P. A. Vacuum 1962, 12, 203-211.
6. Wang, H. Y.; Schneider, W. F.; Schmidtt, D. J Phys Chem C 2009, 113 (34), 15266-15273.
7. Hong, S.; Rahman, T. S.; Jacobi, K.; Ertl, G. J Phys Chem C 2007, 111 (33), 12361-12368.
8. Wang, Y.; Jacobi, K.; Ertl, G. J Phys Chem B 2003, 107 (50), 13918-13924.
9. Cao, X. M.; Burch, R.; Hardacre, C.; Hu, P. Catal Today 2011, 165 (1), 71-79.
10. Gang, L.; Anderson, B. G.; van Grondelle, J.; van Santen, R. A.; van Gennip, W. J. H.; Niemantsverdriet, J. W.; Kooyman, P. J.; Knoester, A.; Brongersma, H. H. J Catal 2002, 206 (1), 60-70.
11. Ivanova, A. S.; Slavinskaya, E. M.; Mokrinskii, V.; Polukhina, I. A.; Tsybulya, S. V.; Prosvirin, I. P.; Bukhtiyarov, V.; Rogov, V.; Zaikovskii, V. I.; Noskov, A. S. J Catal 2004, 221 (1), 213-224.
12. Novell-Leruth, G.; Ricart, J. M.; Perez-Ramirez, J. J Phys Chem C 2008, 112 (35), 13554-13562.
13. Popa, C.; van Santen, R. A.; Jansen, A. P. J. J Phys Chem C 2007, 111 (27), 9839-9852.
14. Offermans, W. K.; Jansen, A. P. J.; van Santen, R. A.; Novell-Leruth, G.; Ricart, J. M.; Perez-Ramirez, J. J Phys Chem C 2007, 111 (47), 17551-17557.
15. Novell-Leruth, G.; Valcarcel, A.; Perez-Ramirez, J.; Ricart, J. M. J Phys Chem C 2007, 111 (2), 860-868.
16. Popa, C.; Offermans, W. K.; van Santen, R. A.; Jansen, A. P. J. Phys Rev B 2006, 74 (15).
17. Wang, C. C.; Yang, Y. J.; Jiang, J. C.; Tsai, D. S.; Hsieh, H. M. J Phys Chem C 2009, 113 (40), 17411-17417.
18. Wang, C. C.; Yang, Y. J.; Jiang, J. C. J Phys Chem C 2009, 113 (7), 2816-2821.
19. Hong, S.; Karim, A.; Rahman, T. S.; Jacobi, K.; Ertl, G. J Catal 2010, 276 (2), 371-381.
20. Andrussow, L., Z. Angew. Chem. 1927, 40, 1183.
21. Raschig, F. Z. Angew. Chem. 1927, 40, 1183.
22. Bodenstein, M., Z. Electrochem. Angew. Phys. Chem. 1935, 41, 466.
23. Lynch, D. T.; Emig, G. Chem Eng Sci 1989, 44 (6), 1275-1280.
24. Corma, A.; Llopis, F.; Monton, J. B.; Weller, S. W. Chem Eng Sci 1988, 43 (4), 785-792.
25. Callaghan, C.; Fishtik, I.; Datta, R.; Carpenter, M.; Chmielewski, M.; Lugo, A. Surf Sci 2003, 541 (1-3), 21-30.
26. Dahl, S.; Sehested, J.; Jacobsen, C. J. H.; Tornqvist, E.; Chorkendorff, I. J Catal 2000, 192 (2), 391-399.
27. Waugh, K. C. Catal Today 1999, 53 (2), 161-176.
28. Askgaard, T. S.; Norskov, J. K.; Ovesen, C. V.; Stoltze, P. J Catal 1995, 156 (2), 229-242.
29. Hoffmann, J.; Schauermann, S.; Johanek, V.; Hartmann, J.; Libuda, J. J Catal 2003, 213 (2), 176-190.
30. Andreasen, A.; Lynggaard, H.; Stegelmann, C.; Stoltze, P. Surf Sci 2003, 544 (1), 5-23.
31. Kandoi, S.; Greeley, J.; Sanchez-Castillo, M. A.; Evans, S. T.; Gokhale, A. A.; Dumesic, J. A.; Mavrikakis, M. Top Catal 2006, 37 (1), 17-28.
32. Blaylock, D. W.; Ogura, T.; Green, W. H.; Beran, G. J. O. J Phys Chem C 2009, 113 (12), 4898-4908.
33. Lopez, N.; Garcia-Mota, M.; Gomez-Diaz, J. J Phys Chem C 2008, 112 (1), 247-252.
34. Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Norskov, J. K. Science 2005, 307 (5709), 555-558.
35. Kandoi, S.; Gokhale, A. A.; Grabow, L. C.; Dumesic, J. A.; Mavrikakis, M. Catalysis Letters 2004, 93 (1-2), 93-100.
36. Levine, Ira N. Quantum chemistry 5th ed.; Prentice-Hall Inc.: New Jersey, 1991; Ch. 15.
37. Gibson, M. C. Ph.D. thesis, University of Durham, Durham, UK.
38. Haynes, P. D. Ph.D. thesis, University of Cambridge, Cambridge, UK.
39. Chalamala, B. R.; Reuss, R. H.; Dean, K. A.; Sosa, E. D.; Golden, D. E. J. Appl. Phys. 2002, 91, 6141.
40. Chalamala, B. R.; Wei, Y.; Reuss, R. H.; Aggarwal, S.; Gnade, B. E.; Ramesh, R.; Bernhard, J. M.; Sosa, E. D.; Golden, D. E. Appl. Phys. Lett. 1999, 74, 1394.

41. Over, H.; Kim, Y. D.; Seitsonen, A. P.; Wendt, S.; Lundgren, E.; Schmid, M.; Varga, P.; Morgante, A.; Ertl, G. Science 2000, 287 (5457), 1474-1476.
42. Wang, C. C.; Siao, S. S.; Jiang, J. C. J Phys Chem C 2010, 114 (43), 18588-18593.

無法下載圖示 全文公開日期 2016/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE