簡易檢索 / 詳目顯示

研究生: 吳懋富
Mao-Fu Wu
論文名稱: 具寬負載範圍高效率之多相直流直流轉換器
Wide Load Range High Efficiency Multiphase DC-DC Converter
指導教授: 邱煌仁
Huang-Jen Chiu
林景源
Jing-Yuan Lin
黃仁宏
Peter Huang
口試委員: 邱煌仁
Huang-Jen Chiu
林景源
Jing-Yuan Lin
黃仁宏
Peter Huang
楊宗銘
Chung-Ming Young
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 80
中文關鍵詞: 定導通時間控制電流均流多相降壓型轉換器
外文關鍵詞: Constant on time control, current balancing, multiphase buck converter
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著在系統單晶片(System on Chip, SoC)手持式裝置的發展,電源供應需要符合大電流驅動能力、高效率、快速暫態響應與小面積等等特性,因此,多相位控制架構更有優勢於單相位。本論文提出具寬負載範圍高效率之多相直流直流轉換器,利用定導通時間控制之優勢來達到快速暫態響應與藉由改變電晶體大小、頻率與相位數量來改善效率,最後使寬負載下都有較好的效率曲線。本晶片以TSMC 0.18μm 1P6M CMOS製程來實現,含PADs之晶片面積為2.5×1.515 mm2。其轉換器之操作頻率為2MHz, 輸入電壓範圍為3V-3.6V,輸出電壓範圍1.8V,負載電流範圍10mA~2000mA,外接電感與電容分別為2.7μH與10μF,輸出電容之等效串聯電阻為15mΩ。當負載電流為300 mA時,其最大改善效率可達25%。


For a system-on-chip (SoC) of mobile device, the power supply is required to have driving capability of high current, high efficiency, fast load transient, small area and so on. Wide Load Range High Efficiency Multiphase DC-DC Converter is presented in this paper. By advantage of constant on time control achieve fast transient response and By using adjustable area of mosfet, frequency and numbers of phases improve efficiency. Finally, the figure of efficiency can get better curve in wide load.The chip is implemented in TSMC 0.18μm 1P6M CMOS process. The chip area including PADs is 2.5×1.515 mm2. The specifications of the converter are the input voltage range of 3V~3.6V, output voltage of 1.8V, switch frequency of 2 MHz, current range of 10mA~2000mA. The off-chip inductance and capacitance are 2.7 μH and 10 μF, respectively. ESR of the output capacitance is 15 mΩ. When converter current is set as 300mA, the efficiency improved is up to 25%.

摘 要 I ABSTRACT II 誌 謝 III 目 錄 V 圖目錄 VIII 表目錄 XII 第一章 緒 論 1 1.1研究動機與目的 1 1.2論文大綱 7 第二章 漣波定導通時間之分析 9 2.1漣波定導通時間控制之動作與穩定條件 9 2.2漣波定導通時間控制之切換頻率變化 11 2.3漣波定導通時間控制之電壓位移問題 12 第三章 多相位之控制原理與比較 14 3.1多相位控制原理與比較 14 3.1.1固定導通時間多相位之控制策略 14 3.1.2電壓模式多相位之控制策略 16 3.1.3電流模式多相位之控制策略 17 3.2所提出多相位之控制策略 18 3.3效率分析 20 第四章 轉換器之設計與實現 23 4.1系統整體架構簡介 23 4.2子電路設計 25 4.2.1電流平衡之電路 25 4.2.2鎖相迴路之電路 26 4.2.3最佳效率控制器 28 4.2.4電流感測之電路 30 4.2.5零電流偵測之電路 31 4.2.6遲滯比較器之電路 32 4.2.7轉導誤差放大器 34 4.2.8四相位時脈產生器之電路 36 第五章 模擬結果 38 5.1 轉換器之模擬波形 38 5.2 模擬結果比較與討論 47 第六章 晶片量測結果 48 6.1 晶片佈局圖 48 6.2 晶片量測結果 50 第七章 結論與未來展望 58 7.1 結論 58 7.2 未來展望 59 參考文獻 61

[1] K. Hu, S. Lin, and C. Tsai, "A Fixed-Frequency Quasi-V2 Hysteretic Buck Converter With PLL-Based Two-Stage Adaptive Window Control," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 10, pp. 2565-2573, Oct. 2015.
[2] Y. Y. Mai and P. K. T. Mok, "A Constant Frequency Output-Ripple-Voltage-Based Buck Converter Without Using Large ESR Capacitor," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, no. 8, pp. 748-752, Aug. 2008.
[3] F. Su and W. Ki, "Digitally assisted quasi-V2 hysteretic buck converter with fixed frequency and without using large-ESR capacitor," 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2009, pp. 446-447,447a.
[4] Y. Lee, S. Wang, and K. Chen, "Quadratic Differential and Integration Technique in V2 Control Buck Converter With Small ESR Capacitor," in IEEE Transactions on Power Electronics, vol. 25, no. 4, pp. 829-838, April 2010.
[5] Y. Lin, C. Chen, D. Chen, and B. Wang, "A Ripple-Based Constant On-Time Control With Virtual Inductor Current and Offset Cancellation for DC Power Converters," in IEEE Transactions on Power Electronics, vol. 27, no. 10, pp. 4301-4310, Oct. 2012.
[6] Ke-Horng Chen, Power Management Techniques for Integrated Circuit Design 1st, Wiley-IEEE Press, 2016, pp.212-226.
[7] P. Liu, F. C. Lee, and Q. Li, "Hybrid interleaving with adaptive PLL loop for adaptive on-time controlled switching converters," 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014, pp. 4110-4117.
[8] Y. Huang, T. Kuo, S. Huang, and K. Fang, "A Four-Phase Buck Converter With Capacitor-Current-Sensor Calibration for Load-Transient-Response Optimization That Reduces Undershoot/Overshoot and Shortens Settling Time to Near Their Theoretical Limits," in IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 552-568, Feb. 2018.doi: 10.1109/JSSC.2017.2768412
[9] Y. Roh, Y. Moon, J. Park, M. Jeong, and C. Yoo, "A Multiphase Synchronous Buck Converter With a Fully Integrated Current Balancing Scheme," in IEEE Transactions on Power Electronics, vol. 30, no. 9, pp. 5159-5169, Sept. 2015.
[10] Xunwei Zhou, T. G. Wang, and F. C. Lee, "Optimizing design for low voltage DC-DC converters," Proceedings of APEC 97 - Applied Power Electronics Conference, Atlanta, GA, USA, 1997, pp. 612-616 vol.2.
[11] O. Abdel-Rahman, J. A. Abu-Qahouq, L. Huang, and I. Batarseh, "Analysis and Design of Voltage Regulator With Adaptive FET Modulation Scheme and Improved Efficiency," in IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 896-906, March 2008.
[12] J. Liu, P. Wang and T. Kuo, "A Current-Mode DC–DC Buck Converter with Efficiency-Optimized Frequency Control and Reconfigurable Compensation," in IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 869-880, Feb. 2012.
[13] Y. Toyama, T. Ogawa, T. Ueno, and T. Itakura, "20 mV input, 4.2 V output SIDO boost converter with low-power controller and adaptive switch size selector for thermoelectric energy harvesting," 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), Toyama, 2016, pp. 9-12.
[14] C. Huang and C. Chen, "A High-Efficiency Current-Mode Buck Converter With a Power-Loss-Aware Switch-On-Demand Modulation Technique for Multifunction SoCs," in IEEE Transactions on Power Electronics, vol. 31, no. 12, pp. 8303-8316, Dec. 2016.
[15] Texas Instruments. TPS40322 datasheet. (2014, Jan.).[Online]. Available:http://www.ti.com/lit/ds/symlink/tps40322.pdf
[16] Maxim Integrated. MAX8973A datasheet. (2013). [Online]. Available:http://datasheets.maximintegrated.com/en/ds/MAX8973A.pdf
[17] C. Huang and P. K. T. Mok, "An 82.4% efficiency package-bondwire-based four-phase fully integrated buck converter with flying capacitor for area reduction," 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, 2013, pp. 362-363.
[18] Yang Zhang, R. Zane, A. Prodic, R. Erickson, and D. Maksimovic, "Online calibration of MOSFET on-state resistance for precise current sensing," in IEEE Power Electronics Letters, vol. 2, no. 3, pp. 100-103, Sept. 2004.
[19] Cheung Fai Lee and Philip K. T. Mok, , “A Monolithic Current - Mode CMOS DC – DC Converter With On-Chip Current-Sensing Technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, January 2004
[20] S. Zhang, M. Zhao, Z. Yang, X. Bai, and X. Wu, "A 16A, 2.5MHz multi-phase DC-DC switching converter with low standby power consumption for mobile applications," 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, 2017, pp. 345-348.
[21] P. Malcovati, M. Belloni, F. Gozzini, C. Bazzani, and A. Baschirotto, “A 0.18-μm CMOS, 91%-efficiency, 2-A scalable buck-boost DC-DC converter for LED drivers,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5392–5398, Oct. 2014.
[22] V. Michal, “Peak-efficiency detection and peak-efficiency tracking algorithm for switched-mode DC–DC power converters,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6555–6568, Dec. 2014.
[23] Y.-P. Su, Y.-J. Luo, M. Lin, Y.-C. Chen, and K.-H. Chen, “Current-mode synthetic control technique for high-efficiency DC–DC boost converters over a wide load range,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 8, pp. 1666–1678, Aug. 2014
[24] J.-M. Liu, P.-Y. Wang, and T.-H. Kuo, “A current-mode DC–DC buck converter with efficiency-optimized frequency control and reconfigurable compensation,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 869–880, Feb. 2012,

無法下載圖示 全文公開日期 2024/08/05 (校內網路)
全文公開日期 2024/08/05 (校外網路)
全文公開日期 2024/08/05 (國家圖書館:臺灣博碩士論文系統)
QR CODE