簡易檢索 / 詳目顯示

研究生: 黃柏元
Po-yuan Huang
論文名稱: 不穩定型骨盆骨折以不同骨折固定術治療之生物力學研究:使用三維非線性脊椎-骨盆-股骨骨骼系統模型與生物力學實驗
Biomechanical Study of Different Fixation Techniques for Unstable Pelvic Fractures Using 3D Nonlinear Finite Element Models of Spine-Pelvis-Femur Complex and Biomechanical Experiments
指導教授: 徐慶琪
Ching-chi Hsu
口試委員: 趙振綱
Ching-kong Chao
李建和
Chian-her Lee
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 65
中文關鍵詞: 不穩定型骨盆骨折骨折固定穩定度植入物強度有限元素分析生物力學測試
外文關鍵詞: Unstable pelvic fracture, Fixation stability, Implant strength, Finite element analyses, Biomechanical tests
相關次數: 點閱:361下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不穩定型骨盆骨折為人體骨折中較不易處理的,此類型骨折常會伴隨骨盆腔內器官受損或失血性休克,而造成較高的發病率與致死率。在過去的相關研究中,不同類型的固定系統已被用於治療不穩定型骨盆骨折,包括:骨外固定器、骨板、薦骨鋼棒、髂薦螺絲、具預張力彎曲鋼棒,然而,上述的骨盆骨折固定系統主要還是藉由臨床研究進行探討,且多數的臨床研究僅針對其中一種骨盆骨折固定系統進行評估,目前僅有少數的研究比較不同骨盆骨折固定系統的生物力學性能,此外,先前的研究已建立三維有限元素模型,以探討骨盆骨折固定系統的生物力學結果,但是,數值模型僅考慮薦骨與骨盆骨,目前沒有任何研究嘗試完整的脊椎-骨盆-股骨骨骼系統模型。因此,本研究的目的為分析與探討三種骨盆骨折固定術,對於不穩定型骨盆骨折治療的生物力學研究。
    本研究使用 ANSYS Workbench 14.5 建立三維非線性脊椎-骨盆-股骨骨骼系統模型,以分析不同骨盆骨折固定系統的生物力學性能,此外,亦使用生物力學測試法進行數值分析結果的驗證。本研究將針對三種骨盆骨折內固定器進行評估與討論,包括:後方髂薦螺絲、薦骨鋼棒、鎖定式骨板,藉由骨折固定穩定度、骨盆骨應力、植入物強度的結果,以探討不同骨盆骨折固定系統的優缺點。
    本研究結果得知,「後方髂薦螺絲固定」相較於「薦骨鋼棒固定」與「鎖定式骨板固定」具有較佳的骨折固定穩定度,此外「鎖定式骨板固定」於骨盆應力與植入物應力有較高的應力集中結果,此易造成骨盆二次骨折或植入物破壞之風險,本研究建立之三維骨骼系統模型,可有效的評估正常情況、骨折情況與不同骨折固定情況之生物力學結果,我們期望研究計畫的成果可給予臨床醫師相關手術的參考依據,同時幫助臨床醫師更了解骨盆骨折固定系統的生物力學。


    Unstable pelvic fracture represents a severe injury associated with high morbidity and mortality. In the past, several types of fixators were used to treat this unstable fracture, including external fixators, plates, sacral bars, iliosacral screws, and pre-tensed curved bar. However, the biomechanical performances of the above fixation techniques were mainly evaluated according to the outcomes of clinical applications, and only one of the fixation techniques was selected and evaluated. To our knowledge, there were few studies to analyze and compare the biomechanical performances of different pelvic fixation techniques. In addition, the past studies had investigated one of the fixation techniques by using finite element methods. However, there has been no study that investigated the biomechanical performances of the fixation techniques by using 3D nonlinear finite element models of spine-pelvis-femur complex. Thus, the purpose of this study was to analyze and investigate the biomechanical performances of different pelvic fixation techniques for the treatment of unstable pelvic fracture.
    Three-dimensional nonlinear finite element models of spine-pelvis-femur complex were developed to investigate the biomechanical performances of different pelvic fixation techniques by using ANSYS Workbench 14.5. Concurrently, the biomechanical experiment was developed to validate the numerical results. In this study, three types of the pelvic fixators were evaluated and discussed, including posterior iliosacral screws, sacral bars, and locking compression plate. The fixation stability, pelvic stress, and implant strength were obtained and used to evaluate the strength and limitation of each fixation technique.
    The results of this study showed that the posterior iliosacral screws had better fixation stability compared with the sacral bars and the locking compression plate. Additionally, the locking compression plate revealed higher stress concentration effects on the pelvis and the implants compared with others. We hope that the outcomes of this study could directly provide the surgical suggestion to orthopedic surgeons and help them to understand the biomechanics of different pelvic fixation techniques.

    目錄 誌謝 i 摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 xi 第1章 概述 1 1.1 研究動機 1 1.2 骨盆骨折原因 2 1.3 骨盆骨折分類 2 1.4 後方髂薦螺絲固定器(Posterior iliosacral screw)介紹 3 1.5 薦骨鋼棒固定(Sacral bars)介紹 3 1.6. 微創經皮鋼板固定(Locking compression plate)介紹 4 1.7 人體脊椎骨盆解剖構造 5 1.8 文獻回顧 9 第2章 材料和方法 13 2.1 脊椎-骨盆-股骨骨骼實體模型建立 13 2.1.1 骨盆植入物模型實體模型建立 14 2.1.2 韌帶系統與肌肉系統模擬建立 15 2.2 有限元素模擬分析 21 2.2.1 材料參數 21 2.2.2 網格劃分的方法及大小 24 2.2.3 邊界負載條件 26 2.2.4 數值模擬結果評估 27 2.3 生物力學實驗 28 2.3.1 骨盆與骨盆骨折固定器 28 2.3.2 生物力學實驗架設 30 2.3.3 生物力學實驗結果相關性分析 32 第3章 結果 33 3.1 有限元素分析 33 3.1.1 收斂性分析 34 3.1.2 腰椎-骨盆-股骨模型於無韌帶與肌肉之位移結果 39 3.1.3 腰椎-骨盆-股骨模型於無韌帶與肌肉之最大應力結果 41 3.1.4 腰椎-骨盆-股骨模型考慮韌帶與肌肉之位移結果 45 3.1.5 腰椎-骨盆-股骨模型考慮韌帶與肌肉之最大應力結果 47 3.1.6 考慮韌帶與肌肉後模型之前後比較 51 3.1.7 有限元素應力結果 53 3.2 生物力學實驗 54 第4章 討論 58 4.1 分析結果 58 4.2 限制 61 第5章 結論與未來展望 62 5.1 結論 62 5.2 未來展望 62 作者簡介 63 參考文獻 64

    [1] A. Papathanasopoulos, C. Tzioupis, V.P. Giannoudis, C. Roberts, P.V. Giannoudis, Biomechanical Aspects of Pelvic Ring Reconstruction Techniques: Evidence Today, Injury 41 (2010) 1220-1227.
    [2] A. Durkin, H.C. Sagi, R. Durham, L. Flint, Contemporary Management of Pelvic Fractures, The American Journal of Surgery 192 (2006) 211-223.
    [3] J.Brun, S. Guillot, P. Bouzat, C. Broux, F. Thony, C. Genty, C. Heylbroeck, P. Albaladejo, C. Arvieux, J. Tonetti, J.-F. Payen, Detecting Active Pelvic Arterial Haemorrhage on Admission Following Serious Pelvic Fracture in Multiple Trauma Patients,Injury(2013)
    http://dx.doi.org/10.1016/j.injury.2013.1006.1011.
    [4] T.I.Tosounidis, P.V. Giannoudis, Pelvic Fractures Presenting with Haemodynamic Instability: Treatment Options and Outcomes, The Surgeon http://dx.doi.org/10.1016/j.surge.2013.07.004 (2013)
    [5] P.Vanderschot, Treatment Options of Pelvic and Acetabular Fractures in Patients with Osteoporotic Bone, Injury 38 (2007) 497-508.
    [6] M.Kubota, K. Uchida, Y. Kokubo, S. Shimada, H. Matsuo, T. Yayama, T. Miyazaki, D. Sugita, S. Watanabe, H. Baba, Postoperative Gait Analysis and Hip Muscle Strength in Patients with Pelvic Ring Fracture, Gait & Posture 38 (2013) 385-390.
    [7] P.M. Rommens, M.H. Hessmann, Staged Reconstruction of Pelvic Ring Disruption: Differences in Morbidity, Mortality, Radiologic Results, and Functional Outcomes Between B1, B2/B3, and C-Type Lesions, Journal of Orthopaedic Trauma 16 (2002) 92-98.
    [8] M. Keel, O. Trentz, MINI-SYMPOSIUM: PELVIC FRACTURES (ii) Acute Management of Pelvic Ring Fractures, Current Orthopaedics 19 (2005) 334-344.
    [9] M. Tile, Pelvic Ring Fractures: Should They Be Fixed?, Journal of Bone and Joint Surgery 70B(1) (1988) 1-12.
    [10] P.T. Simonian, M.L. Chip Routt Jr, R.M. Harrington, A.F. Tencer, The Unstable Iliac Fracture: A Biomechanical Evaluation of Internal Fixation, Injury 28(7) (1997) 469-475.
    [11] H. Tang, C. Yang, Q. Zhang, Treatment of Posterior Pelvic Ring Injuries with Minimally Invasive Percutaneous Plate Osteosynthesis, International Orthopaedics 33 (2009) 1435-1439.

    [12] G. Osterhoff, C. Ossendorf, G.A. Wanner, H.-P. Simmen, C.M.L. Werner, Posterior Screw Fixation in Rotationally Unstable Pelvic Ring Injuries, Injury 42 (2011) 992-996.
    [13] Y. Zhao, J. Li, D. Wang, Y. Liu, J. Tan, S. Zhang, Comparison of Stability of Two Kinds of Sacro-Iliac Screws in the Fixation of Bilateral Sacral Fractures in a Finite Element Model, Injury 43 (2012) 490-494.
    [14] A. Queipo-de-Llano, A. Perez-Blanca, F. Ezquerro, F. Luna-Gonzalez, Simultaneous Anterior and Posterior Compression of the Pelvic Ring with External Fixation Using a Pre-Tensed Curved Bar: A Biomechanical Study, Injury (2013) http://dx.doi.org/10.1016/j.injury.2013.1008.1016.
    [15] Bohme, V. Shim, A. Hoch, M. Mutze, C. Muller, C. Josten, Clinical Implementation of Finite Element Models in Pelvic Ring Surgery for Prediction of Implant Behavior: A Case Report, Clinical Biomechanics 27 (2012) 872-878.
    [16] A.T.M. Phillips , P. Pankaj , C.R. Howie , A.S. Usmanic, A.H.R.W. Simpson, Finite element modelling of the pelvis: Inclusion of muscular and ligamentous boundary conditions, Medical Engineering & Physics 29 (2007) 739–748.
    [17] Niels Hammer, MD, Hanno Steinke, PhD, Uwe Lingslebe, MSc, Ingo Bechmann, MD, Ligamentous influence in pelvic load distribution, The Spine Journal 13 (2013) 1321–1330
    [18] Jong-Eun Kim, , Zuoping Li, Yasushi Ito, Christina D. Huber, Alan M. Shih, Alan W. Eberhardt, King H. Yang, Albert I. King, Bharat K. Soni, Finite element model development of a child pelvis with optimization-based material identification, Journal of Biomechanics42(2009)2191–2195
    [19] Rehan Ul Haq, Ish K Dhammi, Amit Srivastava , Classification of pelvic
    fractures and its clinical relevance , Symposium on Pwlvic Trauma7(2014)8-13
    [20]邱顯峰老師解剖學http://minibaba.pixnet.net/blog/ post/42716725-%E5%9F%BA%E7%A4%8E%E7%91%9C%E4%BC%BD%E8%A7%A3%E5%89%96%E5%AD%B8%EF%BC%88%E4%BA%94%EF%BC%89-
    [21]青年人醫學教育http://taiwanspinecenter.com.tw/tsc_c/ education/spine_anatomy/vertebral_column.htm
    [22] http://class.ibucm.com/tuinaxue/2/right3_41a.htm
    [23]http://smallcollation.blogspot.tw/2013/04/spinal-ligament.html#gsc.tab=0

    [24] Goel., MonroeB.,GilbertsonL., et al.Interlaminar shear stresses and laminae separation in a disc:finite element analysis of the L3-L4 montion segment subjected to axial compressive loads. Spine 1995;20;689
    [25]Netter FH.,"Atlas of Human Anatomy. 2^nd ed.," ICON Learning
    systems.(2009).
    [26] http://www.edoctoronline.com/medical-atlas.asp?c=4&id=22047
    [27] Hip Arthroscopy Specialists.
    http://www.hiparthroscopydoctor.com/conditions-gluteus-medius.
    php
    [28]Invictus. http://www.crossfitinvictus.com/blog/what-is-your-psoas-and-why-should-you-care/
    [29]Ahmad F., Vijay K.G., Ashok B., Steven R. G, Christopher M. B, ”Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine- a finite elemeent based study“ Clinical Biomechanics, Volume27, p226-233(2012)
    [30]Ha S. K., “Finite element modeling of multi-level cervical spinal segments (C3-C6) and biomechanical analysis of an elastomer-type prosthetic disc” Medical Engineering & Physics, Volume28, p534-541(2006)

    QR CODE