簡易檢索 / 詳目顯示

研究生: 王芳儀
Fang-Yi Wang
論文名稱: 積層製造椎籠之結構設計與生醫力學分析
Biomechanical Analysis of Additive Manufactured Cages with Different Structural Designs Using Finite Element Methods and Mechanical Tests
指導教授: 徐慶琪
Ching-Chi Hsu
趙振綱
Ching-Kong Chao
口試委員: 張定國
Ding-Guo Jang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 131
中文關鍵詞: 後方椎間融合術椎籠鄰近節段退化有限元素分析積層製造
外文關鍵詞: osterior lumbar interbody fusion, Cage, Adjacent segment degeneration, Finite element method, Additive manufacturing
相關次數: 點閱:268下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨年齡漸增的老化現象、長期姿勢不良或是不正常受力等因素使椎間盤受損,造成椎間不穩定,甚至壓迫脊椎周圍神經使病患感到疼痛、影響生活品質。治療此病症的常見手術方式為後方腰椎融合術,然而手術節段喪失的活動度在鄰近節段發生補償現象,進而衍生許多後遺症。本研究藉由有限元素分析軟體分析椎籠微結構,找到既能維持脊椎的穩定度,又能提供病患術後良好活動度,且達到減緩鄰近節段退化的最佳選擇。
    本研究使用T10-S1多節段之胸腰椎脊椎模型,模擬腰椎L3-L4處發生退化,並於退化節段植入後方固定器及椎籠,針對椎籠微結構進行參數化分析、複合材料設計與混合型設計,在前彎、後彎、側彎和扭轉四種運動方向,探討各節椎間旋轉角度、椎籠最大應力、鄰近節段椎間盤最大應力與手術節段硬質骨最大應力等生物力學特性,並與工業技術研究院生醫與醫材研究所提供之機械實驗結果比較相關性探討。
    由上述數值模擬與機械力學測試結果得知,「微結構支柱直徑」與「微結構支柱分佈密度」會顯著影響椎間旋轉角度結果,然而「微結構支柱角度」與「PEEK夾層厚度」對於椎間旋轉角度結果影響甚小;椎籠應避免設計成較細、較狹長與較稀疏的幾何結構,且不建議施加PEEK夾層,其目的為避免椎籠產生較高的應力值。在最終的混合型設計中,採用參數化分析所得之兩種較合適的微結構設計,企圖同時滿足椎間旋轉角度較接近完整模型且椎籠擁有較小的應力值,結果顯示以支柱直徑0.4 mm、支柱角度40°、支柱分佈密度較緊密的設計為最佳選擇。


    Posterior lumbar interbody fusion (PLIF) has been the most commonly used surgical method for treating degenerative disc which caused by human aging, long-term bad posture or abnormal external force. But many clinical studies have showed that adjacent segment degeneration was found during the postoperative period. The purpose of this study was to find the best implant design which can maintain stabilizing effect and provide good postoperative activity for patients using finite element analysis (FEM).
    Three-dimensional finite element models of the T10-S1 spine with cage of different geometric parameters were developed in this study and investigate the parametric analysis, composite materials design and hybrid design of cage. To simulate the bone fusion surgery, the cage was inserted into the L3-L4. The loading cases of flexion, extension, lateral bending and torsion were considered. In post-processing, the intersegmental rotation, the von Mises stress of cage and the von Mises stress of intervertebral disc and cortical bone were calculated at index levels and adjacent levels. Then we consider the correlation between numerical simulation and the mechanical experiment data from Biomedical Technology and Device Research Laboratories of Industrial Technology Research Institute (ITRI_BDL ).
    "Micro-structural pillar diameter" and "micro-structural pillar density" significantly affect the intersegmental rotation by the numerical simulation and the mechanical test. However, "micro-structural pillar angle" and "the thickness of the PEEK layer" had no influence. Cage avoids being slender, narrow and scattered geometry. In addition, adding the PEEK layer to the micro-structure is not a good choice to prevent stress of the cage getting higher value. In order to get the best intersegmental rotation and the von Mises stress of cage, we mix two appropriate micro-structures from parametric analysis in hybrid design. Consequently, the 0.4 mm of the pillar diameter, the 55°of the pillar angle and the dense pillar density is the best design.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 XIII 表目錄 XVI 第一章 緒論 1 1.1 研究動機 1 1.2 脊椎之解剖生理學 1 1.2.1 椎體之生物力學特性 3 1.2.2 椎間盤之生物力學特性 4 1.2.3 椎體韌帶之生物力學特性 4 1.3 脊椎之常見病症 5 1.3.1 骨質疏鬆症 6 1.3.2 椎體受損 7 1.3.3 椎間盤退化 7 1.3.3.1 椎間盤突出 8 1.3.3.2 椎管狹窄 9 1.3.3.3 椎間滑脫 9 1.4 腰椎植入物介紹 10 1.4.1 融合系統 10 1.4.2 動態固定系統 12 1.4.2.1 棘突間固定系統 12 1.4.2.2 椎弓根骨螺絲系統 13 1.5 積層製造 17 1.6 文獻回顧 19 1.6.1 後方椎間融合術之鄰近節段退化問題 19 1.6.2 骨質疏鬆症對脊椎之影響 20 1.6.3 複合材料椎籠之生物力學分析 21 1.6.4 形狀優化設計-基因演算法 23 1.6.5 動態固定系統發展及臨床結果 24 1.6.6 動態固定系統之有限元素分析法 25 1.6.7 積層製造技術之應用 28 1.7 研究目的 30 1.8 本文架構 31 第二章 材料與方法 32 2.1 有限元素分析法介紹 34 2.2 模型結構建立 35 2.2.1 完整脊椎模型 35 2.2.2 植入物模型 35 2.2.2.1 積層製造椎籠之參數化分析 37 2.2.2.2 骨質疏鬆脊椎之材料參數設定 38 2.2.2.3 積層製造椎籠之複合材料設計 39 2.2.2.4 積層製造椎籠之混和型微結構設計 40 2.2.3 胸腰椎模型植入後方固定系統 40 2.3 有限元素分析 42 2.3.1 完整胸腰椎有限元素模型 42 2.3.2 材料參數 43 2.3.3 介面接觸條件設定 45 2.3.4 網格設定 46 2.3.6 收斂性分析 50 2.4 脊椎之生物力學分析 52 2.4.1 角度位移轉換軸向位移 52 2.4.2 椎間旋轉角度計算 54 2.4.3 植入物最大應力 55 2.4.4 鄰近節段椎間盤最大應力 56 2.4.5 手術節段硬質骨最大應力 56 2.5 機械力學測試 57 第三章 結果 58 3.1 收斂性分析 59 3.2 完整脊椎模型驗證 61 3.3 參數化微結構椎籠之結果分析 64 3.3.1 不同微結構支柱直徑 64 3.3.1.1 各椎節椎間旋轉角度 64 3.3.1.2 椎籠最大應力 69 3.3.1.3 幾何數值模擬與機械實驗之相關性 70 3.3.2 不同微結構支柱角度 71 3.3.2.1 各椎節椎間旋轉角度 71 3.3.2.2 椎籠最大應力 76 3.3.2.3 幾何數值模擬與機械實驗之相關性 77 3.3.3 不同微結構支柱分佈密度之結果 78 3.3.3.1 各椎節椎間旋轉角度 78 3.3.3.2 椎籠最大應力 83 3.4 參數化椎籠之綜合生物力學結果分析 84 3.4.1 鄰近節段椎間盤最大應力 84 3.4.2 手術節段硬質骨最大應力 88 3.5 骨質疏鬆脊椎條件之結果分析 92 3.5.1 各椎節椎間旋轉角度 92 3.5.2 椎籠最大應力 97 3.6 複合材料椎籠之結果分析 98 3.6.1 以Type B為主的不同複合材料厚度設計 98 3.6.1.1 各椎節椎間旋轉角度 99 3.6.1.2 椎籠最大應力 103 3.6.2 以Type G為主的不同複合材料厚度設計 104 3.6.2.1 各椎節椎間旋轉角度 104 3.6.2.2 椎籠最大應力 109 3.7 混合型椎籠之結果分析 110 3.7.1 混合型設計 110 3.7.1.1 各椎節椎間旋轉角度 111 3.7.1.2 椎籠最大應力 115 第四章 討論 116 4.1研究結果之探討 116 4.2 參數化分析之探討 116 4.2.1 微結構支柱直徑 116 4.2.2 微結構支柱角度 117 4.2.3 微結構支柱分佈密度 117 4.2.4 幾何數值模擬與機械實驗之相關性 118 4.2.5 參數化之綜合生物力學分析 119 4.3 骨質疏鬆脊椎條件下之探討 120 4.4 複合材料設計分析之探討 120 4.5 混合型設計分析之探討 121 4.6 研究限制 122 第五章 結論與未來展望 124 5.1結論 124 5.2未來展望 125 參考文獻 126 作者簡介 132

    [1]台灣脊椎中心
    http://taiwanspinecenter.com.tw/
    [2]WebMD
    http://www.webmd.com/back-pain/guide/types-of-spine-curvature-disorders
    [3]family practice NOTEBOOK
    http://www.fpnotebook.com/ortho/Anatomy/LmbrSpnAntmy.htm
    [4]Morphopedics
    http://morphopedics.wikidot.com/broken-neck
    [5]J. Chazal, A. Tanguy, M. Bourges, G. Gaurel, G. Escande, M. Guillot, G. Vanneuville," Biomechanical properties of spinal ligaments and a istological study of the supraspinal ligament in traction", Journal of Biomechanics.18,167-176 (1985)
    [6] The Taiwanese Osteoporosis Association
    http://www.toa1997.org.tw/
    [7]Anna-Mart Kruger Physiotherapists
    http://www.physionam.com/index.html
    [8]iSpineCare
    http://www.ispinecare.com/index.html
    [9] V. Palepu, M. Kodigudla, and V. K. Goel, "Biomechanics of Disc Degeneration," Advances in Orthopedics. Advance online publication. doi:10.1155/2012/726210
    [10]J. P. G. Urban, and S. Roberts, "Degeneration of the Intervertebral Disc," Arthritis Research & Therapy. vol 5, 120-130 (2003).
    [11]Morphopedics
    http://morphopedics.wikidot.com/degenerative-disc-disease
    [12]Spine-health
    http://www.spine-health.com/
    [13]MAYFIELD Brain&Spine
    http://www.mayfieldclinic.com/PE-STEN.htm
    [14]H. Serhan, D. Mhatre, H. Defossez, and C. M. Bono, "Motion-Preserving
    Technologies for Degenerative Lumbar Spine: The Past, Present, and Future
    Horizons," SAS Journal. 5, 75-89 (2011).
    [15] C. Y. Barrey, R.K. Ponnappan, J. Song, and A.R. Vaccaro, "Pedicle Screw-Based Dynamic Stabilization Devices for the Lumbar Spine," ArgoSpine News & Journal. 21, 78-84 (2009).
    [16]P. Enker, and A. D. Steffee, " Interbody fusion and instrumentation," Clin Orthop Relat Res..300, 90-101 (1994).
    [17]C. Gomleksiz, M. Sasani, T. Oktenoglu, and A. F. Ozer, " A Short History of Posterior Dynamic Stabilization," Adv Orthop. Advance online publication. doi: 10.1155/2012/629698 (2012).
    [18]D. U. Erbulut, I. Zafarparandeh, A. F. Ozer, and V. K. Goel, "Biomechanics of Posterior Dynamic Stabilization Systems," Adv Orthop. Advance online publication. doi: 10.1155/2013/451956 (2013).
    [19]C. Y. Barrey, R. K. Ponnappan, J. Song, and A. R. Vaccaro, "Biomechanical Evaluation of Pedicle Screw-Based Dynamic Stabilization Devices for the Lumbar Spine: A Systematic Review," SAS Journal. 2(4), 159–170 (2008).
    [20]C. Barrey,G. Perrin, and S Champain," Pedicle-Screw-Based Dynamic Systems and Degenerative Lumbar Diseases: Biomechanical and Clinical Experiences of Dynamic Fusion with Isobar TTL", ISRN Orthopedics. Advance online publication. doi: 10.1155/2013/183702 (2013)
    [21]Y. S. Kim, H. Y. Zhang, B. J. Moon, K. W. Park, K. Y. Ji, W. Ch. Lee,D. H.Kim, " Nitinol Spring Rod Dynamic Stabilization System and Nitinol Memory Loops in Surgical Treatment for Lumbar Disc Disorders: Short-term Follow up," Neurosurg Focus. 22(1), 10-15 (2007).
    [22]J. D. Coe, S. H. Kitchel, H. J. Meisel, C. H. Wingo, S. E. Lee, and T. A. Jahng," NFlex Dynamic Stabilization System : Two-Year Clinical Outcomes of Multi-Center Study," J Korean Neurosurg Soc.. 51(6), 343-349 (2012)
    [23]工業雜誌11月號-「3D列印材料」及「石化高值化材料」技術專題
    https://www.materialsnet.com.tw/DocPrint.aspx?id=18245
    [24]雷射與積層製造的重要性
    http://www.laservalley.org.tw/upload/i_technology/marketplace-13-01.pdf
    [25]工業材料雜誌335期-金屬粉體材料在3D列印技術之發展與應用
    https://www.materialsnet.com.tw/DocPrint.aspx?id=18244
    [26]機械工業雜誌345期-雷射積層製造技術與生醫應用
    http://www.automan.tw/mag_images/book/345_p112.pdf
    [27]S. Agazzi, A. Reverdin, and D. May, "Posterior Lumbar Interbody Fusion with Cages: an Independent Review of 71 Cases," Journal of Neurosurgery: Spine. 91(2), 186-192 (1999).
    [28]C. K. Lee, "Accelerated Degeneration of the Segment Adjacent to a Lumbar Fusion," Spine. 13(3), 375-377 (1988).
    [29]Y. Aota, K. Kumano, and S. Hirabayashi, "Postfusion Instability at the Adjacent Segments After Rigid Pedicle Screw Fixation for Degenerative Lumbar Spinal Disorders," Journal of Spinal Disorders & Techniques. 8, 464-473 (1995).
    [30]S. Okuda, M. Iwasaki, A. Miyauchi, H. Aono,M. Morita, and T. Yamamoto, "Risk Factors For Adjacent Segment Degeneration after PLIF," Spine. 29(14), 1535-1540 (2004).
    [31]P. Park, H. J. Garton, V. C. Gala, J. T. Hoff, and J. E. McGillicuddy, "Adjacent Segment Disease after Lumbar or Lumbosacral Fusion: Review of the Literature," Spine. 29(17), 1938-1944 (2004).
    [32] A. Marsol-Puig, R. Huguet-Comelles, J. Escala-Arnau, and J. Giné-Gomà, "Incidence and Risk Factors of Adjacent Disc Degeneration after Lumbar Fusion,"Revista Española de Cirugía Ortopédicay Traumatología (English Edition). 55(3), 170-174 (2011).
    [33]B. L. Riggs, and L. J. Melton, "The Worldwide Problem of Osteoporosis: Insights Afforded by Epidemiology," Bone. 17(5), 505-511 (1995).
    [34]J. Homminga, H. Weinans,W. Gowin, D. Felsenberg, and R. Huiskes, "Osteoporosis Changes the Amount of Vertebral Trabecular Bone at Risk of Fracture but not the Vertebral Load Distribution," Spine. 26(14), 1555-1561 (2001).
    [35]M. Schwenkglenks, K. Lippuner, H. J. Häuselmann, and T. D. Szuc, " A Model of Osteoporosis Impact in Switzerland 2000-2020," Osteoporos Int. .16(6), 659-671 (2004).
    [36]Y. Shikinami and M. Okuno, "Mechanical Evaluation of Novel Spinal Interbody Fusion Cages Made of Bioactive, Resorbable Composites," Biomaterials. 24(18), 3161-3170 (2003).
    [37]Y. Li, Z. G. Wu, X. K. Li, Z. Guo, S. H. Wu, Y. Q. Zhang,..., Z. Y. Zhang, "A Polycaprolactone-tricalcium Phosphate Composite Scaffold as an Autograft-Free Spinal Fusion Cage in a Sheep Model," Biomaterials. 35(22), 5647-5659 (2014).
    [38]Y. H. Lee, C. J. Chung , C. W. Wang, Y. T. Peng, C. H. Chang, C. H. Chen,... C. T. Li, "Computational Comparison of Three Posterior Lumbar Interbody Fusion Technique by using Porous Titanium Interbody Cages with 50% Porosity," Computers in Biology and Medicine. 71, 35-45 (2016).
    [39]C. C. Hsu, "Shape Optimization for the Subsidence Resistance of an Interbody Device using Simulation-Based Genetic Algorithms and Experimental Validation," J Orthop Res. 31(7), 1158-1163 (2013).
    [40]T. M. Stoll, G. Dubois, and O. Schwarzenbach, "The Dynamic Neutralization System for the Spine: A Multi-Center Study of a Novel Non-fFusion System," Eur Spine J. 11(2), 170-178 (2002).
    [41]M. Bothmann, E. Kast, G. J. Boldt, and J. Oberle, "Dynesys Fixation for Lumbar Spine Degeneration," Neurosurg Rev. 31(2), 189-196 (2008).
    [42]W. Huang, Z. Chang, R. Song, K. Zhou, and X.Yu, " Non-Fusion Procedure using PEEK Rod Systems for Lumbar Degenerative Diseases: Clinical Experience with a 2-Year Follow-Up," BMC Musculoskelet Disord. Advance online publication. doi: 10.1186/s12891-016-0913-2
    [43]A. Rohlmann, N. K. Burra, T. Zander, and G. Bergmann, "Comparison of the Effects of Bilateral Posterior Dynamic and Rigid Fixation Devices on the Loads in the Lumbar Spine: a finite element analysis," Eur Spine J. 16(8), 1223-1231 (2007).
    [44]D. S. Shin, K. Lee, and D. Kim, "Biomechanical Study of Lumbar Spine with Ddynamic Stabilization Device using Finite Element Method," Computer-Aided Design. 39(7), 559-567 (2007).
    [45]F. Galbuseraa, C. M. Bellini, F. Anasetti, C. Ciavarroa, A. Lovi, M. Brayda-Bruno, "Rigid and Flexible Spinal Stabilization Devices: A Biomechanical Comparison," Medical Engineering & Physics. 33(4), 490–496 (2011).
    [46]T. A. Jahng, Y. E. Kim, and K. Y. Moon, "Comparison of the Biomechanical Effect of Pedicle-Based Dynamic Stabilization: a Study using Finite Element Analysis," Spine J. 13(1), 85-94 (2013).
    [47]Z. Wang, Y. Teng, D. Li, " Fabrication of Custom-Made Artificial Semi-Knee Joint based on Rapid Prototyping Technique: Computer-Assisted Design and Manufacturing," Chinese journal of reparative and reconstructive surgery. 18(5), 347-351 (2004).
    [48]D.T. Li, Z. Zhang, J.W. Deng, M.Y. Huang , X. F. Wan, H. J. Ni, "Application of Rapid Prototyping Technology in Product Design," Advanced Materials Research. 989, 3208-3211 (2014).
    [49]R. Wauthle, J. Stok, S. A. Yavari, J. V. Humbeeck, J. P. Kruth ,A. A. Zadpoor,... J. Schrooten, "Additively Manufactured Porous Tantalum Implants," Acta Biomaterialia. 14(1), 217-225 (2015).
    [50]A. Polikeit, L. P. Nolte, S. J. Ferguson, "The Effect of Cement Augmentation on the Load Transfer in an Osteoporotic Functional Spinal Unit: Finite Element Analysis," Spine. 28(10), 991-996 (2003).
    [51]V. K. Goel, B. T. Monroe, L. G. Gilbertsonet, P. Brinckmann, " Interlaminar Shear Stresses and Laminae Separation in a Disc Finite Element Analysis of the L3-L4 Motion Segment to Axial Compressive," Spine. 20(6), 689-698 (1995).
    [52] A. A. White, M. Panjabi, "Clinical Biomechanics of the Spine," Philadelphia: Lippincott (1990).

    QR CODE