簡易檢索 / 詳目顯示

研究生: 林孟樺
Meng-Hua Lin
論文名稱: 考量復健動作之近端肱骨骨折電腦分析模式建置與應用
Development and Application of Proximal Humerus Fractures Models with Shoulder Rehabilitation Activities Using Finite Element Method
指導教授: 徐慶琪
Ching-Chi Hsu
口試委員: 趙振綱
Ching-Kong Chao
林鼎勝
Ting-Sheng Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 69
中文關鍵詞: 近端肱骨骨折鎖定式骨板復健動作有限元素分析
外文關鍵詞: finite element method, proximal humerus fractures, locking plate system, rehabilitation activity
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   肩關節是人體中唯一連接著人體軀幹與臂膀之重要結構,一旦衝撞就會導致肱骨與肌肉損傷,在近幾年來近端肱骨骨折被列為第三常見之老年人疾病,容易因摔倒等原因受到衝擊受損,造成不可逆之後遺症,在臨床上會針對其症狀嚴重性進行不同程度的治療,其中骨板固定術是臨床上常見的治療之一,也是學術研究常見探討的對象,希望可以穩定其傷部能夠恢復術前之功能性,在有限元素模擬逐漸成熟的現今,雖然常見關於近端肱骨骨折的治療策略模擬,卻鮮少關於復健動作的生物力學影響,以及探討的動作單一並沒有給予肌肉力量,因此本研究將利用數值模擬去探討近端肱骨骨折在使用鎖定式骨板固定術後於旋轉肌群作用下之生物力學影響。
      本研究利用Solidworks繪圖,建立肱骨、肩胛骨、肩胛軟骨、鎖定式骨板與骨螺絲組合成一個完整的數值模擬模型,將肱骨模擬成三種不同骨折情形並匯入電腦分析軟體ANSYS中進行數值模擬分析,將評估三種不同復健動作,每一個動作討論四種肱骨角度,故共計有36個數值分析模型,取得骨頭與植入物的應力負載評估其失效風險,同時會比對肩關節總位移與肌肉力量反力討論關聯性。
      結果顯示錯位性近端肱骨骨折具有較高的負載,在於骨頭與骨螺絲上會比其他骨折情況有高應力產生,從骨板應力分佈得知骨缺損會導致應力過度集中在近端骨板區域,因此具有良好的內側支撐可以降低其應力集中現象,而復健動作中的水平內收動作是相對容易造成肱骨負擔,認為並不適合做為初始復健動作,會容易造成復原失效與對病人的負擔。


    Proximal humerus fractures are frequent type of humeral fracture and account for about 5% of all fractures in adults. Open reduction and internal fixation with plates is one of the leading modes of operative treatment for these fractures. Previous studies have numerically investigated plate fixation to provide fracture stabilization and improve fixation mobility. However, few numerical studies have examined the fixation strategy in rehabilitation activity with simplified loading and boundary conditions. Therefore, the purpose of this study is to evaluate the biomechanical outcome of plate fixations with three types of proximal humerus fractures and three types of shoulder rehabilitation activities using finite element analysis.
      Three-dimensional finite element models of the shoulder joint with three types of rehabilitations and three types of proximal humerus fractures were developed in this study.
    The locking plate system and screw were established using SolidWorks. In the boundary condition, the medial border of scapula was fully constrained. The locations of the rotator cuff insertion on the humerus model were defined rotator cuff footprint and developed three local coordinate systems. The rotator cuff muscle forces from the previous study were applied on corresponding location. In the post-processing, the bone stress and implant stress were calculated, and the correlation between muscle reaction force and total deformation was also obtained.
      The result showed that the displaced proximal humerus fractures were the highest stress in bone and screw. In the presence of a fracture gap, maximal stresses in the plates appeared above the fracture gap. So, a good medial contact is recommended to reduce the implant stress at the proximal region of the plate. Additionally, the outcome of this study indicated that horizontal flexion of rehabilitation activities increased bone stress, so it may increase the possibility of bone failure during early rehabilitation. Hence, horizontal flexion of rehabilitation activities may be suggested in the latter stages.

    中文摘要 I ABSTRACT III 致謝 V 目錄 VII 圖目錄 X 表目錄 XII 第一章 簡介 1 1.1 研究背景、動機與目的 1 1.2 肩關節解剖性結構之介紹 2 1.2.1 肱骨 3 1.2.2 肩胛骨 4 1.2.3 鎖骨 6 1.2.4 旋轉肌群 6 1.3 肩膀關節功能性介紹 9 1.3.1 肩鎖關節(Acromioclavicular Joint) 10 1.3.2 盂肱關節(Glenohumeral joint) 10 1.4 近端肱骨骨折成因與影響 11 1.4.1 近端肱骨骨折成因 12 1.4.2 近端肱骨骨折的分類 12 1.4.3 骨折併發症與影響 14 1.5 近端肱骨骨折治療方式簡介 14 1.6 術後復健動作介紹 15 1.6.1 外展(Abduction) 16 1.6.2 屈曲(Flexion) 16 1.6.3 水平內收(Horizontal Flexion) 17 1.7 有限元素法 17 1.8 文獻回顧 19 1.8.1 體外實驗與有限元素模擬對照 19 1.8.2 有限元素模擬相關研究 20 1.9 本文架構 24 第二章 材料與方法 25 2.1 模型幾何建構 25 2.1.1 肩關節模型 25 2.1.2 模擬近端肱骨骨折之創傷模型 26 2.1.3 手術治療之植入物模型 28 2.2 有限元素分析 29 2.2.1 匯入肩關節幾何模型 29 2.2.2 材料參數設定 29 2.2.3 網格與元素設定 30 2.2.4 介面接觸條件 31 2.2.5 邊界負載條件設定 32 2.2.6 數值模擬評估輸出 34 第三章 結果 35 3.1 收斂性分析結果 35 3.2 術後復健之肩關節評估 39 3.2.1 術後位移結果 39 3.2.2 術後肱骨之受力情形 40 3.2.2.1 外展模型之骨應力結果 41 3.2.2.2 屈曲模型之骨應力結果 41 3.2.2.3 水平內收模型之骨應力結果 42 3.3 骨板應力結果 43 3.3.1 骨板之最大應力 43 3.3.2 骨板之應力分佈圖 45 3.4 骨螺絲應力結果 49 3.4.1 三種復健動作之平均骨螺絲應力負載情形 49 3.4.2 骨螺絲最大應力結果 50 3.4.3 骨螺絲應力分佈圖 51 第四章 討論 52 4.1 骨板外型設計 52 4.2 復健動作 52 4.3 位移結果與肌肉力量趨勢比對 53 4.4 術後之不同創傷肱骨的受力探討 53 4.5 骨板之應力探討 54 4.6 骨螺絲的應力分佈與影響 56 4.7 限制拘束設定 58 4.8 研究限制 62 第五章 結論與未來展望 64 5.1 結論 64 5.2 未來展望 65 參考文獻 66

    1. Bahrs, C., et al., Trends in epidemiology and patho-anatomical pattern of proximal humeral fractures. Int Orthop, 2014. 38(8): p. 1697-704.
    2. Çaliskan, E. and Ö. Doğan, PHILOS plate versus nonoperative treatment in 2-, 3-, and 4-part proximal humeral fractures: Comparison with healthy control subjects. Journal of Orthopaedic Surgery, 2019. 27(3): p. 2309499019875169.
    3. ShoulderDoc. Bones & Joints of the Shoulder. Available from: https://www.shoulderdoc.co.uk/article/1177.
    4. Frederic H. Martini, R.B.T., Human Anatomy (8th Edition) - Standalone book 8th Edition. 2014: Pearson.
    5. Bartholomew, M., ed. Essenitals of Anatomy & Physiology, 5th ed. 人體解剖學. 2015, 台灣培生教育: 新北市. 151-156, 220-226.
    6. Worrell, T.W., et al., An analysis of supraspinatus EMG activity and shoulder isometric force development. Medicine and science in sports and exercise, 1992. 24(7): p. 744-748.
    7. Lee, S.-B., et al., Dynamic Glenohumeral Stability Provided by the Rotator Cuff Muscles in the Mid-Range and End-Range of Motion : A Study in Cadavera*. JBJS, 2000. 82(6): p. 849.
    8. Mansfield, P.J.N., Donald A., Ph.D., Essentials of Kinesiology for the Physical Therapist Assistant. 2019.
    9. Shoulder Joint and Bursa. Available from: https://sites.google.com/site/3r03mskportfolio/shoulderjointandbursa.
    10. Shoulder acromioclavicular joint injuries common in athletes. Available from: https://www.nolasportsmedicine.com/blog/shoulder-acromioclavicular-joint-injuries-common-in-athletes.
    11. Mitchell, R.D.A.W.V.A., Gray's Anatomy for Students 4th Edition. 2019: Elsevier.
    12. Palvanen, M., et al., Update in the Epidemiology of Proximal Humeral Fractures. Clinical Orthopaedics and Related Research®, 2006. 442: p. 87-92.
    13. Marsh, J.L., et al., Fracture and dislocation classification compendium - 2007: Orthopaedic Trauma Association classification, database and outcomes committee. J Orthop Trauma, 2007. 21(10 Suppl): p. S1-133.
    14. Plath, J.E., et al., Locking nail versus locking plate for proximal humeral fracture fixation in an elderly population: a prospective randomised controlled trial. BMC Musculoskeletal Disorders, 2019. 20(1): p. 20.
    15. 畢柳鶯, 肩關節置換及其復健. 物理治療學會雜誌, 1986. 11: p. 26-33.
    16. Orthoinfo. Shoulder Surgery Exercise Guide. Available from: https://orthoinfo.aaos.org/en/recovery/shoulder-surgery-exercise-guide.
    17. McCausland, C., et al., Anatomy, Shoulder and Upper Limb, Shoulder Muscles, in StatPearls. 2021: Treasure Island (FL).
    18. Chang, L.R., P. Anand, and M. Varacallo, Anatomy, Shoulder and Upper Limb, Glenohumeral Joint, in StatPearls. 2021: Treasure Island (FL).
    19. Kuechle, D.K., et al., Shoulder muscle moment arms during horizontal flexion and elevation. J Shoulder Elbow Surg, 1997. 6(5): p. 429-39.
    20. Varga, P., et al., Fatigue failure of plated osteoporotic proximal humerus fractures is predicted by the strain around the proximal screws. J Mech Behav Biomed Mater, 2017. 75: p. 68-74.
    21. Yang, P., et al., Biomechanical effect of medial cortical support and medial screw support on locking plate fixation in proximal humeral fractures with a medial gap: a finite element analysis. Acta Orthop Traumatol Turc, 2015. 49(2): p. 203-9.
    22. Fletcher, J.W.A., et al., Screw configuration in proximal humerus plating has a significant impact on fixation failure risk predicted by finite element models. J Shoulder Elbow Surg, 2019. 28(9): p. 1816-1823.
    23. Tilton, M., et al., Finite Element-Predicted Effects of Screw Configuration in Proximal Humerus Fracture Fixation. Journal of Biomechanical Engineering, 2020. 142(8).
    24. Sgroi, T.A. and M. Cilenti, Rotator cuff repair: post-operative rehabilitation concepts. Curr Rev Musculoskelet Med, 2018. 11(1): p. 86-91.
    25. Curtis, A.S., et al., The insertional footprint of the rotator cuff: an anatomic study. Arthroscopy, 2006. 22(6): p. 609.e1.
    26. Wu, W., et al., Subject-specific musculoskeletal modeling in the evaluation of shoulder muscle and joint function. J Biomech, 2016. 49(15): p. 3626-3634.
    27. Kaisidis, A., et al., Biomechanical Analysis of the Fixation Strength of a Novel Plate for Greater Tuberosity Fractures. Open Orthop J, 2018. 12: p. 218-228.
    28. Reinold, M.M., R. Escamilla, and K.E. Wilk, Current Concepts in the Scientific and Clinical Rationale Behind Exercises for Glenohumeral and Scapulothoracic Musculature. Journal of Orthopaedic & Sports Physical Therapy, 2009. 39(2): p. 105-117.
    29. Lill, H., et al., Proximal humeral fractures: how stiff should an implant be? A comparative mechanical study with new implants in human specimens. Arch Orthop Trauma Surg, 2003. 123(2-3): p. 74-81.
    30. Kralinger, F., et al., Proximal humeral fractures: what is semi-rigid? Biomechanical properties of semi-rigid implants, a biomechanical cadaver based evaluation. Arch Orthop Trauma Surg, 2008. 128(2): p. 205-10.
    31. Wang, F., et al., A novel surgical approach and technique and short-term clinical efficacy for the treatment of proximal humerus fractures with the combined use of medial anatomical locking plate fixation and minimally invasive lateral locking plate fixation. J Orthop Surg Res, 2021. 16(1): p. 29.
    32. Erdoğan, M., et al., The effect of inferomedial screw on postoperative shoulder function and mechanical alignment in proximal humerus fractures. European Journal of Orthopaedic Surgery & Traumatology, 2014. 24(7): p. 1055-1059.
    33. Kim, H., et al., Role of Additional Inferomedial Supporting Screws in Osteoporotic 3-Part Proximal Humerus Fracture: Finite Element Analysis. Geriatr Orthop Surg Rehabil, 2020. 11: p. 2151459320956958.
    34. Tepass, A., et al., Complication rates and outcomes stratified by treatment modalities in proximal humeral fractures: a systematic literature review from 1970-2009. Patient Saf Surg, 2013. 7(1): p. 34.
    35. Solberg, B.D., et al., Surgical treatment of three and four-part proximal humeral fractures. J Bone Joint Surg Am, 2009. 91(7): p. 1689-97.
    36. Spross, C., et al., Surgical treatment of Neer Group VI proximal humeral fractures: retrospective comparison of PHILOS® and hemiarthroplasty. Clin Orthop Relat Res, 2012. 470(7): p. 2035-42.
    37. Boesmueller, S., et al., Risk factors for humeral head necrosis and non-union after plating in proximal humeral fractures. Injury, 2016. 47(2): p. 350-5.
    38. Guy, P., G.P. Slobogean, and R.G. McCormack, Treatment preferences for displaced three- and four-part proximal humerus fractures. J Orthop Trauma, 2010. 24(4): p. 250-4.
    39. 賴奕羽, 不同骨折固定策略與復健動作於肩關節大結節骨折治療之生物力學研究, in 應用科技研究所. 2019, 國立臺灣科技大學. p. 81.

    無法下載圖示 全文公開日期 2024/07/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE