簡易檢索 / 詳目顯示

研究生: 張惠雯
Hui-wen Chang
論文名稱: 含不對稱結構的2-Bromo-與2,2',6-Tribromo-4,4'-Oxydianiline合成可溶性聚醯亞胺及其性質探討
Synthesis and Characterization of Organo-soluble Polyimides Derived from Asymmetric 2-Bromo- and 2,2'6,-Tribromo- 4,4'-Oxydianilines
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 李宗銘
Tzong-Ming Lee
王英靖
Ing-Jing Wang
游進陽
Chin-Yang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 75
中文關鍵詞: 聚醯亞胺非對稱結構溶解度
外文關鍵詞: polyimides, asymmetric structure, solubility
相關次數: 點閱:215下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用4,4’-oxydianiline (ODA)為起始物,經過氧化、控制溴化劑N-bromosuccinamid (NBS)的當量數進行溴化與還原後,得到兩個含溴且具非對稱結構的新型芳香族二胺,2-Bromo-4,4’-oxydianiline (Br-ODA 6)與2,2’,6-tribromo-4,4’-oxydianiline (TrB-ODA 7)。將Br-ODA (6)與TrB-ODA (7)分別與三種不同的二酸酐pyromellitic dianhydride (PMDA)、3,3',4,4'-biphenyl tetracarboxylic dianhydride (BPDA)與2,2'-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)用一步法合成出新型的芳香族聚醯亞胺PI 10與PI 11系列。這些聚醯亞胺的固有黏度(inherent viscosity)約為0.50∼0.96 dL/g (0.5 g/dL, NMP, 30℃)。除了Br-ODA/PMDA之外,其餘的聚醯亞胺在m-cresol中以一步法反應皆可得到均勻的聚醯亞胺溶液,展現了良好的溶解性。而TrB-ODA所合成出的聚醯亞胺其溶解度比對稱型更為優異,即使和結構較剛硬的Pyromellitic dianhydride (PMDA)或3,3',4,4'-biphenyl tetracarboxylic dianhydride (BPDA)反應,所形成的聚醯亞胺仍在常溫下溶於NMP、DMAc與m-cresol中,展現了極佳的溶解特性。這是因為不對稱的構型會造成高分子鏈重覆單元的異構,破壞高分子鏈間的作用和堆疊能力,使溶解度提升。這些聚醯亞胺亦展現出良好的熱穩定性。使用熱機械分析儀(TMA)測得玻璃轉移溫度介於297∼333℃之間,熱膨脹係數27∼56μm/(m℃)。熱裂解溫度(Td 5%)由熱重分析儀(TGA)測得皆高於475℃,展現了此新型聚醯亞胺良好的尺寸安定性和熱穩定性。除此之外,本研究將利用鈴木偶合反應,將Br-ODA與TrB-ODA上的溴基置換成苯基,得到另外兩個含不對稱苯基結構的新型二胺。


Two new asymmetric and aromatic diamines, 2-bromo-4,4’-oxydianiline (Br-ODA 6) and 2,2’,6-tribromo-oxydianiline (TrB-ODA 7), have been synthesized by oxidation, bromination in the presence of different amount of N-Bromosuccinimide (NBS) then reduction of 4,4’-oxydianiline (4,4’-ODA). Based on diamine (6) and (7), a series of asymmetric polyimides (PI 10 and PI 11) were prepared by three different dianhydrides in refluxing m-cresol containing a catalytic amount of isoquinoline, respectively. The resulting polyimides, except Br-ODA/PMDA, are soluble in the m-cresol without precipitated during polymerization. These polyimides, especially PI 11, showed enhanced solubilities compared to those derived from 4,4’-ODA and corresponding dianhydride. The PI 11a derived from the very rigid pyromellitic dianhydride (PMDA) and TrB-ODA (7) can be soluble in THF, DMF, DMAc, DMSO and NMP in ambient temperature. In the 1H-NMR spectrum of the PI 11a, the protons of pyromellitic moiety shows three different chemical shifts are attributed to the fact that there are three different repeating unit isomers. The incorporation of the asymmetric bromide substituents is an effective way to increase the interchain distance and decrease in the intermolecular force and packing ability of resulting polymers. Thus, these polyimides also exhibited good thermal stability. Their glass transition temperatures were ranged from 297 to 333℃ and coefficient of thermal expansion were 27∼56μm/(m℃) measured by thermal mechanical analysis (TMA). The temperature at 5% weight loss (Td 5%), determined by thermal gravimetric analysis (TGA) in nitrogen atmosphere, were in the range of 467 to 529℃. In addition, another two diamines containing asymmetric phenyl groups were synthesized by using Suzuki coupling based on asymmetric bromide diamines. The preliminary results on the properties of polyimides derived from these two phenyl substituted asymmetric diamines were also reported.

摘要 I Abstract II 誌謝 IV 目錄 V Figure 索引 VI Scheme 索引 VII Table 索引 VIII 第一章 緒論 1 1.1 聚醯亞胺簡介 1 1.2 聚醯亞胺的合成方法 3 1.3 聚醯亞胺的改質 6 1.4 研究動機 20 第二章 實驗部分 21 2.1 實驗藥品 21 2.2 實驗儀器 23 2.3 單體製備流程 24 2.4 高分子合成 29 2.5 高分子薄膜製備 29 第三章 結果與討論 30 3.1 單體的合成 30 3.2 高分子的合成 45 3.3 高分子的分子量與溶解度 49 3.4 高分子的熱性質 53 3.5含不對稱苯基的聚醯亞胺 56 第四章 結論 60 參考資料 61

1.Hasegawa, M.; Horie, K. Prog. Polym. Sci. 2001, 26, 259.
2.Tohru, M. Proc. SPIE 2004, 5517, 73.
3.Guo, M.; Wang, X. Eur. Polym. J. In Press, Corrected Proof.
4.Bogert, M.; Renshaw, R. R. J. Am. Chem. Soc. 1908, 30, 1135.
5.Edwards, W. M.; Robison, I. M. U.S. Patent 2 710 853 1955.
6.Endrey, A. L. U.S. Patent 3 179 630 1965.
7.Edward, W. M. U. S. Patent 3 179 614 1965.
8.Vinogradova, S. V.; Vygodskii, Y. S.; Korshak, V. V. Polym. Sci. U.S.S.R. 1970, 12, 2254.
9.Malinge, J.; Garrapon, J.; Sillion, B. Brit. Polym, J. 1988, 20, 431.
10.Farrissey, W. J.; Andrew, P. S. U. S. Patent 3 787 367 1974.
11.Critchley, J. P. Prog. Polym. Sci. 1970, 2, 51.
12.Park, J. W.; Lee, M.; Lee, M. H.; Liu, J. W.; Kim, S. D.; Chang, J. Y.; Rhee, S. B. Macromolecules 1994, 27, 3459.
13.Vinogradova, S. V.; Korshak, V. V.; Vygodskii, Y. S. Polym. Sci. U.S.S.R. 1966, 8, 888.
14.Harris, F. W.; Feld, W. A.; Lanier, L. H. Appl. Polym. Sympos. 1975, 26, 421.
15.Harris, F. W.; Sakaguchi, Y. Proc. Polym. Mater. Sci. Eng. 1989, 60, 187.
16.Harris, F. W.; Hsu, S. L. C. High Perform. Polym. 1989, 1, 3.
17.Chern, Y. T.; Chung, W. H. J. Polym. Sci., Part A: Polym. Chem. 1996, 34, 117.
18.Chern, Y. T. J. Polym. Sci., Part A: Polym. Chem. 1996, 34, 125.
19.Anannarukan, W.; Tantayanon, S.; Zhang, D.; Aleman, E. A.; Modarelli, D. A.; Harris, F. W. Polymer 2006, 47, 4936.
20.Oishi, Y.; Ishida, M.; Kakimoto, M. A.; Imai, Y.; Kurosaki, T. J. Polym. Sci., Part A: Polym. Chem. 1992, 30, 1027.
21.Liou, G. S.; Hsiao, S. H.; Ishida, M.; Kakimoto, M.; Imai, Y. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 3815.
22.Cheng, S. H.; Hsiao, S. H.; Su, T. H.; Liou, G. S. Macromolecules 2005, 38, 307.
23.Liou, G. S.; Yang, Y. L.; Su, Y. O. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 2587.
24.Lee, T. J.; Chang, C. W.; Hahm, S. G.; Kim, K.; Park, S.; Kim, D. M.; Kim, J.; Kwon, W. S.; Liou, G. S.; Ree, M. Nanotechnology 2009, 20, 135204.
25.Liaw, D. J.; Liaw, B. Y. J. Polym. Sci., Part A: Polym. Chem. 1996, 35, 1527.
26.Liaw, D. J.; Liaw, B. Y. Polym. J. 1996, 28, 970.
27.Yang, C. P.; Chen, R. S. J. Polym. Sci., Part A: Polym. Chem. 2001, 40, 429.
28.Hsiao, S. H.; Chang, Y. M.; Chen, H. W.; Liou, G. S. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 4579.
29.Korshak, V. V.; Rusanov, A. L.; Katsarava, R. D.; Niyazi, F. F. Polym. Sci. U.S.S.R. 1973, 15, 3000.
30.Eastmond, G. C.; Paprotny, J. Macromolecules 1995, 28, 2140.
31.Fedotova, O. Y.; Gorokhov, V. I.; Paresishvili, O. I.; Karetnikov, G. S.; Kolesnikov, G. S. Polym. Sci. U.S.S.R. 1972, 14, 1404.
32.Takekoshi, T.; Wirth, J. G.; Heath, D. R.; Kochanowski, J. E.; Manello, J. S.; Webber, M. J. J. Polym. Sci., Part A: Polym. Chem. 1980, 18, 3069.
33.Song, N. H.; Gao, L. X.; Ding, M. X. J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 3147.
34.Yang, C. P.; Hsiao, S. H.; Chen, K. H. Polymer 2002, 43, 5095.
35.Yang, C. P.; Hsiao, S. H.; Wu, K. L. Polymer 2003, 44, 7067.
36.Hung, K. Y.; Tsiang, R. C. C. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 1662.
37.Liou, G. S.; Wang, J. S. B.; Tseng, S. T.; Tsiang, R. C. C. J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 1673.
38.Huang, S. Y.; Yang, C. P.; Hsiao, S. H. J. Appl. Polym. Sci. 2007, 104, 620.
39.Wang, Z. Y.; Qi, Y. Macromolecules 1994, 27, 625.
40.Imai, Y. High Perform. Polym. 1995, 7, 337.
41.Hsu, L. C. Ph. D. Dissertation, University of Akron 1991.
42.Chen, J. C. Ph. D. Dissertation Institute of Polymer Science, the University of Akron 1996.
43.Li, F.; Fang, S.; Ge, J. J.; Honigfort, P. S.; Chen, J. C.; Harris, F. W.; Cheng, S. Z. D. Polymer 1999, 40, 4571.
44.Li, F.; Ge, J. J.; Honigfort, P. S.; Fang, S.; Chen, J. C.; Harris, F. W.; Cheng, S. Z. D. Polymer 1999, 40, 4987.
45.Lin, S. H.; Li, F.; Cheng, S. Z. D.; Harris, F. W. Macromolecules 1998, 31, 2080.
46.Kim, H. S.; Kim, Y. H.; Ahn, S. K.; Kwon, S. K. Macromolecules 2003, 36, 2327.
47.Kim, Y. H.; Kim, H. S.; Kwon, S. K. Macromolecules 2005, 38, 7950.
48.Bessonov, M. I., Koton, M.M., Kudryavtsev, V.V., Laius, L.A. Polyimides: thermally stable polymers 1987, Consultants Bureau, New York.
49.Harris, F. W.; Cheng, S. Z. D. U. S. Patent 7 074 493 B1 2006.
50.Chern, Y. T.; Tsai, J. Y. Macromolecules 2008, 41, 9556.
51.Chern, Y. T.; Twu, J. T.; Chen, J. C. Eur. Polym. J. 2009, 45, 1127.
52.Chern, Y. T.; Tsai, J. Y.; Wang, J. J. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 2443.
53.Lin, C. H.; Chang, L. S.; Peng, L. A.; Peng, S. P.; Chung, Y. H. Polymer 2010, 51, 3899.
54.Teclechiel, D.; Christiansson, A.; Bergman, A.; Marsh, G. Environ. Sci. Technol. 2007, 41, 7459.
55.Chen, J. C.; Liu, Y. T.; Leu, C. M.; Lioa, H. Y.; Lee, W. C.; Lee, T. M. J. Appl. Polym. Sci. 2010, 117, 1144.
56.Chen, J. C.; Rajendran, K.; Chang, Y. H.; Huang, S. W.; Chern, Y. T. J. Appl. Polym. Sci. 2011, 120, 3159.
57.Chen, J. C.; Rajendran, K.; Huang, S. W.; Chang, H. W. J. Polym. Res. 2011, accepted. DOI:10.1007/s10965-011-9575-9.
58.Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
59.Li, F.; Fang, S.; Ge, J. J.; Honigford, P. S.; Chen, J. C.; Harris, F. W.; Cheng, S. Z. D. Polymer 1999, 40, 4571.
60.張雅惠,「由2,2’-Diiodo-及2,2’-Bisphenyl-4,4’-oxydianiline合成可溶性聚醯亞胺及其性質探討」,碩士論文, 2010年1月,國立台灣科技大學。

無法下載圖示 全文公開日期 2016/07/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE