簡易檢索 / 詳目顯示

研究生: 謝浚雄
Chun-hsiung Hsieh
論文名稱: 光聚合PCL材料系統成份探討及其應用於快速成型組織工程支架
Study on the Photo-curable PCL Material System and Its Application in Rapid Prototyping Tissue Engineering Scaffold
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 謝明發
Ming-Fa Hsieh
戴念梓
Dai Nian-tzyy
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 125
中文關鍵詞: RP快速成型組織工程支架
外文關鍵詞: Rapid Prototyping, tissue engineering, scaffold
相關次數: 點閱:328下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在先前的研究中,使用可光交聯PCL 添加光起始劑之後製作出孔
洞尺寸為300μm 的組織工程支架。在嘗試著製作更小孔洞的支架
時,由於聚合速度太快,導致製作出來的孔洞尺寸與設計尺寸相差太
多,因此本研究藉由系統和材料方面的改善,以製作出孔洞尺寸更小
的組織工程支架。
在系統方面,製作可調式成型載台來改善成型平板以及材料槽之
間的平行度,並且使用菱鏡片降低光強度以及改善光線投射出材料槽
的角度。在材料方面,在材料合成時降低acryloyl chloride 添加量,以
降低材料C=C 的生成量,並觀察不同添加比例所製作出來可光交聯PCL
其材料性質與製作誤差的表現後發現,acryloyl chloride 添加比例為0.5
的可光交聯PCL,其單層曝光秒數從3 秒提昇至7 秒,材料親水性也較
佳。並且能製作出誤差量小於4%的300μm 孔洞的單層支架,因此將
此材料額外添加100μl 的HEMA 單體,使材料延展性提昇,降低光
敏感度。單層曝光秒數也提昇至12 秒,並且製作出誤差量小於4%
的200μm 孔洞的單層支架,和單層400 加上300μm 的單層雙孔洞
支架。最後透過設計之組合平台將單層孔洞200μm 支架以及單層雙
孔洞400 加上300μm 之支架,將其組裝出多孔洞尺寸的組織工程支
架。


In our previous laboratory research, the cross-linkable photo-curable
PCL, mixing with photo-initiator, was used to fabricate single layer
scaffold with 300μpore size. However, in fabricating scaffold with
smaller pores, the pore size was not satisfactory as designed due to
over-curing. Therefore, this research is devoted to improving luminance
and material’s photosensitivity.
The distance between light source and the material tank was first
modified to be adjustable so they can better parallel with each other.
Moreover, a prism was used to improve the problem of scattered light for
better beaming angle. Second, by reducing the volume of acryloyl
chloride, the amount of C=C was reduced, with different proportions of
photo-curable PCL measured. Results showed that the hydrophilicity of
the PCL was satisfactory when the ratio of the acryloyl chloride and the
cross-linkable PCL was 1:0.5 with better, longer, exposure time increased
from 3 seconds to 7 seconds. A single layer scaffold with 300μm pore
size was successfully fabricated with the error less than 4%. Besides,
adding 100μl of of HEMA monomer lead to better material plasticity
and lower photosensitivity, with exposure time increased up to 12
seconds. A 200μm pore scaffold, and a 400μm and 300μpore scaffold
were respectively fabricated with the error within 4%. These materials
were then used to fabricate porous scaffolds by the self-assembly working
table.

目錄 I 致謝 III 圖目錄 III 表目錄 VII 摘要 1 第一章:緒論 2 1-1前言 2 1-2 研究背景與動機 2 1-3 研究目的與方法 3 1-4 論文架構簡介 4 第二章:文獻探討 5 2-1 組織工程介紹 5 2-1-1 支架材料之特性 9 2-1-2生醫材料與實驗材料簡介 10 2-1-3 一般支架製備方法 19 2-2 應用快速原型技術製作組織工程支架 22 2-2-1 快速原型加工原理 23 2-2-2 利用快速原型技術做組織工程支架 24 第三章:系統介紹與變更 36 3-1 生醫動態光照快速成型系統 36 3-1-1 上下照式成型系統之差異及選用 37 3-2下照式生醫動態光罩快速成型系統 39 3-2-1 動態光罩控制系統 40 3-2-2 動態光罩產生器 43 3-2-3 動態光照成型系統簡介 47 3-3下照式動態光罩成型系統變更 48 3-3-1 三軸可調變式載台 48 3-3-2 材料槽選用與變更 52 3-3-3 菱鏡片 55 3-4組裝平臺 58 第四章:材料合成與性質檢測 61 4-1 PCL材料系統簡介與變更 61 4-1-1 實驗藥品與設備 62 4-1-2 可交聯PCL之合成 63 4-2 材料性質檢驗與測試設備簡介 68 4-2-1光敏度測試 68 4-2-2親水接觸角量測 69 4-2-3拉伸試驗 71 4-2-4單層支架參數設定與製作誤差準確度檢測 74 4-2-5 示差掃描分析 76 4-2-6 PCL-DA之靜態降解 77 4-3 材料性質測試結果 80 4-3-1光敏度測試: 80 4-3-2水接觸角量測測試: 81 4-3-3拉伸試驗 85 4-3-4單層設計與製作誤差準確度量測 87 4-3-5示差掃描分析 89 4-3-6 添加不同acryloyl chloride劑量之PCL之靜態降解 91 4-4 加入HEMA後材料性質之改變 93 第五章:3D組織工程支架製作 102 5-1 3D支架製作設計概念與加工流程 102 5-2 3D支架設計製作與組裝 104 第六章:結論 116 6-1 結論 116 6-2 未來展望 117 參考文獻: 118

【1】FerryP.W.Melchels, JanFeijen, DirkW.Grijpma“A review on stereolithography and its applications in biomedical engineering” Biomaterials, Volume 31, p.6121-6130,2010
【2】Hae Yong Kweon, Mi Kyong Yoo, In Kyu Park, Tae Hee Kim, Hyun Chul Lee,Hyun-Sook Lee, Jong-Suk Oh, Toshihiro Akaike, and Chong-SuCho, “A noveldegradable poly caprolactone networks for tissue engineering,” Biomaterials, Volume 24, p.801-808, 2003
【3】薛智仁,“動態光罩成型系統製作3D PCL管狀多孔性組織工程支架之研究”,國立台灣科技大學機械工程所,碩士論文
【4】黃孝村,“下照式動態光罩快速成型系統製作3D PCL組織工程支架”,國立台灣科技大學機械工程所,碩士論文
【5】曾俊元,“動態光罩快速成型系統光聚合PCL-PEG-PCL 製作3D 組織工程支架”,國立台灣科技大學機械工程所,碩士論文。
【6】Http://www.centropede.com/UKSB2006/ePoster/images/backgro
und/TE_model_large.jpg
【7】Dietmar W. Hutmacher, and Andres J. “Garcia, Scaffold-based bone engineering by using genetically modified cells,” Gene, Volume 347, p1-10, 2005.
【8】http://enews2.kmu.edu.tw/index.php/Enews128_%E6%B7%BA
%E8%AB%87%E9%AA%A8%E7%B5%84%E7%B9%94%E5%86%8D%E7%94%9F
【9】Shoufeng Yang, Kah-Fai Leong, Zhaohui DU, and Chee-Kai Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional Factors,” Tissue Engineering, Volume 7, p.679-689, 2001.
【10】李宣書,淺談組織工程,物理雙月刊(廿四卷三期),2001年6月。
【11】張根源,”組織工程技術與應用”,化工科技與商情第33 期,2002 年6 月。
【12】D.K. Gilding, and A.M. Reed, “Biodegradable polymers for use in surgery -Poly(glycolic acid)/Poly(lactide acid)homo-and copolymers.2.In vitro degradation, ” Polymer, Volume 22, p.494-498, 1981.
【13】Mehrdad Rafat a,b,1, Carolyne A. Cle′ roux, Wai Gin Fong , Adam N. Baker , Brian C. Leonard ,Michael D. O’Connor a, Catherine Tsilfidis, “PEG–PLA microparticles for encapsulation and delivery of Tat-EGFP to retinal cells,” Biomaterials Volume 31, p.34141–3421, 2010.
【14】Jennie Baier Leach, Kathryn A. Bivens, Charles W. Patrick Jr., and Christine E. Schmidt, “Photocrosslinked Hyaluronic Acid Hydrogels: Natural, Biodegradable Tissue Engineering Scaffolds,” Biomaterials, p.578-589, 2002.
【15】俞耀庭,生物醫用材料,初版,新文京,2004。
【16】工業技術研究院,“生醫材料與組織工程”。
【17】Yoshinori Onuki, Masaru Hoshi, Hideaki Okabe, Mikito Fujikawa, Mariko Morishita, Kozo Takayama, “Formulation optimization of photocrosslinked polyacrylic acid modified with 2-hydroxyethyl methacrylate hydrogel as an adhesive for a dermatological patch,” Journal of Controlled Release Volume 108 p.331-340, 2005.
【18】Hyung Woo Kim, Chung Wook Chung, Young Baek Kim, and Young Ha Rhee, “Preparation and hydrolytic degradation of Semi-interpenetrating networks of poly(3-hydroxyundecenoate) and poly( lactide-co-glycolide ),” International Journal of Biological Macromolecules, Volume 37, p.221-226, 2005.
【19】Shanfeng Wang, Michael J. Yaszemski, Andrew M. Knight, James A. Gruetzmacher, Anthony J. Windebank, Lichun Lu“Photo-crosslinked poly(e-caprolactone fumarate) networks for guided peripheral nerve regeneration: Material properties and preliminary biological evaluations” Acta Biomaterialia, Volume 5,p. 1531–1542,2009
【20】Janine Jansen , Mark J. Boerakker, Jean Heuts, Jan Feijen, Dirk W. Grijpma, “Rapid photo-crosslinking of fumaric acid monoethyl ester-functionalized poly(trimethylene carbonate) oligomers for drug delivery applications,” Journal of Controlled Release, Volume 147,p54-61,2010.
【21】Min Hu, Rensheng Deng, Karl M. Schumacher, Motoichi Kurisawa, Hongye Ye, Kristy Purnamawati, Jackie Y. Ying “Hydrodynamic spinning of hydrogel fibers” Biomaterials, Volume 31,p.863-869,2010
【22】J.M. Taboas, R.D. Maddox, P.H. Krebsbach, and S.J. Hollister, “Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds,” Biomaterials, Volume 24, p.181-194, 2003.
【23】K. Whang, C. H. Thomas, K. E. Healy, and G. Nuber, “A novel method to fabricate bioabsorbable scaffolds,” Polymer, Volume 36, p.837-842, 1995.
【24】Guobao Wei and Peter X. Ma, “Structure and properties of nano-hydroxyapatite/ polymer composite scaffolds for bone tissue engineering,” Biomaterials 25, p4749-4757, 2004
【25】Kwangsok Kim, Meiki Yu, Xinhua Zong, Jonathan Chiu, Dufei Fang, Young-Soo Seo, Benjamin S. Hsiao, Benjamin Chu and Michael Hadjiargyrou, “Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide) nanofiber scaffolds for biomedical applications,” Biomaterials 24 p.4977-4985, 2003.
【26】Linbo Wu, Dianying Jing, Jiandong Ding, “A room-temperature injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds,” Biomaterials Volume 27, p185-191, 2006.
【27】Markus S. Widmer, Puneet K. Gupta, Lichun Lu, Rudolf K. Meszlenyi, Gregory R. D. Evans, Keith Brandt, Tom Savel, Ali Gurlek, Charles W. PatrickJr and Antonios G. Mikos, “Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration,” Biomaterials 19, p1945-1955. 1998
【28】Andreas Gebhardt, “Rapid Prototyping,” Hanser Gardner Publications; 1 edition (June 2003), P. 31
【29】Crump; S. Scott,” Apparatus and method for creating three-dimensional objects”, United States Patent and Trademark Office Websites ,1989.
【30】H. Chim, D. W. Hutmacher, A. M. Chou, A. L. Oliveira, R. L. Reis, T. C. Lim, J. T Schantz: “A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering,” Oral Maxillofac. Surg.; Volume 35, p.928-934, 2006.
【31】Mark J. Mondrinosa, Robert Dembzynskib, Lin Lub, Venkata K.C. Byrapogub, David M. Woottonb, Peter I. Lelkesa, Jack Zhoub, “Porogen-based solid freeform fabrication of polycaprolactone–calcium phosphate scaffolds for tissue engineering,” Biomaterials, Volume 27, p.4399-4408, 2006.
【32】Lauren Shor, Selc-uk Gu c- eri, Xuejun Wen, Milind Gandhi, Wei Sun, “Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitr,” Biomaterials, Volume 28, p.5291-5297
【33】Saif Khalil, Wei Sun, “Biopolymer deposition for freeform fabrication of hydrogel tissue constructs,”Materials Science and Engineering C, Volume 27, p.469-478, 2007.
【34】D. R. NISBET, J. S. FORSYTHE “ Characterization of neural stem cells on electrospun poly(ε-caprolactone) submicron scaffolds: evaluating their potential in neural tissue engineering” J. Biomater. Sci. Polymer Edn, Vol. 19, No. 5, p.623-634, 2008
【35】C. R. Deckard, “Selective laser sintering , ”Phd Thesis , The University of Texas at Austin, Austin, texas, 1988.
【36】K. H. Tan, C. K. Chua, K. F. Leong, C. M. Cheah, P. Cheang, M. S. Abu Bakar and S. W. Cha, “Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends,” Biomaterials, Volume 24, p. 3115-3123, 2003.
【37】Hongyun Huang, Shunsuke Oizumi, Nobusiko Kojima, Toshiki Niino and Yasuyuki Sakai, “Avidin–biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network,” Biomaterials, Volume 28, p. 3815-3823, 2007.
【38】Carlo Mangano, Alfredo De Rosa, Vincenzo Desiderio, Riccardo d’Aquino, Adriano Piattelli, Francesco De Francesco , Virginia Tirino, Francesco Mangano, Gianpaolo Papaccio, “The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures,” Biomaterials, Volume31, p.3543-3551,2010.
【39】Crump; S. Scott,” Apparatus and method for creating three-dimensional objects”, United States Patent and Trademark Office Websites ,1989.
【40】 D. R. NISBET, J. S. FORSYTHE “ Characterization of neural stem cells on electrospun poly(ε-caprolactone) submicron scaffolds: evaluating their potential in neural tissue engineering” J. Biomater. Sci. Polymer Edn, Vol. 19, No. 5, p 623–634 , 2008
【41】Kazuyoshi Itoga, Masayuki Yamato, Jun Kobayashi, Akihiko Kikuchi, Teruo Okano, “Cell micropatterning using photopolymerization with a liquid crystal device commercial projector,” Biomaterials Volume 25, P2047–2053, 2004.
【42】Mara L. Macdonald, Raymond E. Samuel, Nisarg J. Shah, Robert F. Padera , Yvette M. Beben,Paula T. Hammond, “ Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants” Biomaterials, Volume32,p.1446-1453,2011
【43】Ferry P.W. Melchels, Jan Feijen, Dirk W. Grijpma, “A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography,” Biomaterials, Volume 30, p. 3801–3809, 2009.
【44】Jae-Won Choi, Ryan Wicker, Seok-Hee Lee,Kyung-Hyun Choi, C hang-Sik Ha and Ildoo Chung“Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography” , Journal of Materials Processing Technology, Volume 209, p. 5494-5503, 2009.
【45】He Jiankang, Li Dichen, Liu Yaxiong, Yao Bo, Lu Bingheng, Lian Qin “Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures,” Polymer, Volume. 48, p. 4578-4588, 2007
【46】http://www.tomshardware.com/reviews/home-theater-cinema-
paradiso-video-projectors,900.html
【47】http://www.opticalsciences.com/dmd.html
【48】http://www.pctechguide.com/dlp-projectors
【49】http://webcache.googleusercontent.com/search?q=cache:2OLQuc
ZpJ6UJ:www.moneydj.com/z/zu/zua/zuab/zuabz_CB85C1BE-B512-4F4AF9E-D01464726D45.asp.htm+%E5%B7%A5%E7%A0%94%E9%99%A2%E5%85%89%E9%9B%BB%E6%89%80+DMD&cd=1&hl=zh-TW&ct=clnk&gl=tw&source=www.google.com.tw
【50】http://www.optoma.com.tw/home/default.aspx 奧圖碼科技
【51】http://www.hk-phy.org/ 香港物理協會
【52】ASTM D638-99
【53】Yi Hong, Jianjun Guan, Kazuro L. Fujimoto, Ryotaro Hashizume, Anca L. Pelinescu, William R. Wagner “Tailoring the degradation kinetics of poly (ester carbonate urethane) urea thermoplastic elastomers for tissue engineering scaffolds”, Biomaterials, Volume 31,p 4249-4258, 2010
【54】Stephanie J. Bryant, Janet L. Cuy, Kip D. Hauch, Buddy D. Ratner“Photo-patterning of porous hydrogels for tissue engineering” Biomaterials, Volume 28,p.2978-2986 (2007)
【55】 Ji Sun Park, Dae Gyun Woo, Bo Kyung Sun, Hyung-Min Chung, Su Jin Im, You Mee Choi, Kinam Park, Kang Moo Huh, Keun-Hong Park, “In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application”, Journal of Controlled Release, Volume124,p.51-59.

無法下載圖示 全文公開日期 2016/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE