簡易檢索 / 詳目顯示

研究生: 張雯琪
Wen-Zhi Chang
論文名稱: 可應用於電阻式隨機存取記憶體之鈧酸鈥薄膜的製備與特性研究
Preparation and Characterization of HoScOx Thin Films for Resistance Random Access Memory (RRAM) Application
指導教授: 朱瑾
Jinn-P. Chu
口試委員: 郭東昊
Dong-Hau Kuo
周賢鎧
Shyan-kay Jou
周振嘉
C. C. Chou
王錫福
Sea-Fue Wang
曾俊元
Tseung-Yuen Tseng
梁元彰
Yuan-Chang Liang
張佳文
C. W. Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 102
中文關鍵詞: 電阻式轉換記憶體薄膜稀土元素磁控濺鍍非晶
外文關鍵詞: Resistance Random Access Memory, Thin Film, Rare-earth element, Sputter, amorphous
相關次數: 點閱:304下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

目前市面上已被廣泛使用的記憶體,如:動態隨機存取記憶體(DRAM, Dynamic Random Access Memory)及快閃記憶體(flash memory)等,在元件的尺寸大小及密度都已達到減縮的限制且也有些先天的缺點。近幾十年來,電阻式隨機存取記憶體(RRAM, Resistance Random Access Memory)被視為最具有發展潛力的新世代非揮發性記憶體(nonvolatile memory),而正被學者們積極的探討與研究。Chua表示:「憶阻器可實現非常小的奈米等級元件,且不會產生現今將電晶體尺寸縮小的過熱問題。」當惠普從幾年前開始研發縱橫式交換器時,其密度曾達到快閃記憶體的40或50倍之多。
本研究初期,使用射頻磁控濺鍍系統製備厚度約36奈米之三元(HoScOx, HSO)的非晶質(amorphous)薄膜。實驗中利用不同比例的鍍膜氣氛,得到氧含量分別為50.7、55.4和57.6 at. %的薄膜(其試片名稱表示為HS51O、HS55O和HS58O)。並使用TEM、EDS、半導體量測儀(Agilent HP B1500A)、XPS觀察其基本特性且深入探討電阻的轉換(resistance switching)行為及轉換機制。由實驗結果發現,低氧含量之HSO薄膜(HS51O和HS55O)具有unipolar轉換行為且事先不需要forming process來形成電阻式記憶體(即non-forming)。但隨著氧含量愈高所需施加的操作電壓上升,高氧含量之HS58O薄膜則不具有電阻式轉換行為。可想而知,電阻轉換行為與薄膜中氧含量擁有相當程度的關係將在本文中深入研究及討論。接著探討退火氣氛(HV, High Vacuum和oxygen)及薄膜厚度(小於36奈米)的影響,以求得最佳化的電阻式隨機存取記憶體。


The nonvolatile of resistance random access memory (RRAM) is great attracting as a promising candidate for next-generation memory application. In this study, 36 nm-thick of amorphous HoScOx (HSO) films show high potential for RRAM applications because they have unipolar resistance switching (RS) behavior, low electrical stress, high performance of endurance and retention, and simple process without forming or annealing. Different oxygen contents (50.7, 55.4 and 57.6 at. % whose were denoted as HS51O, HS55O and HS58O, respectively) in HSO thin films are prepared by R.F. magnetron sputtering with various Ar/O2 ratio. There is an apparent dependence of RS property on oxygen content in the film. The RS property is investigated and is thought to be related to oxygen-deficient and oxygen-deficient concentration, which serves as the filamentary conduction in the sample. To further obtain the optimization condition for RRAM application, the post-annealing atmosphere and thickness effects are also studied in this work.

摘要 I Abstract II Acknowledgements III Contents IV List of tables VI Chapter 1 Introduction 1 Chapter 2 Background 4 2.1 What is RRAM 4 2.2 Classification of resistance switching types 5 2.3 Resistance switching mechanisms 7 2.3.1 Conducting filaments mechanism (CFM) 7 2.3.2 Electrochemical metallization mechanism (ECM) 8 2.3.3 Valence change mechanism (VCM) 10 2.3.4 Thermochemical mechanism (TCM) 11 2.4 Electrical transport and conduction mechanisms 13 2. 5 Materials and Characterization of HoScO3 17 Chapter 3 Experimental procedure 32 3. 1 Target preparation 32 3. 2 Substrate preparation 32 3. 3 Thin film deposition 33 3. 4Annealing condition 33 3.5 Characterization of films 34 3.5.1 Composition and crystal structure analyses 34 3.5.2 Chemical state analyses 34 3.5.3 Electrical property analyses 34 Chapter 4 Results and discussion 38 4.1 As-deposited films 38 4.1.1 TEM results 38 4.1.2 I-V results 39 4.1.3 XPS results 43 4.2 Annealing films 44 4.2.1With O2 atmosphere in RTA 45 4.2.2 With HV in RTA 48 4.3 Effect of film thicknesses 51 Chapter 5 Conclusions 92 References 94 Vita 100 List of Publications 101

[1] S. Lai, T. Lowrey, Int. Electron Devices Meet. Tech. Dig., (2001) 803.
[2] G. A. Prinz, Science, 282 (1998) 1660.
[3] T. Hayashi, Y. Igarashi, D. Inomata, T. Ichimori, T. Mitsuhashi, K. Ashikaga, T. Ito, M. Yoshimaru, M. Nagata, S. Mitarai, H. Godaiin, T. Nagahama, C. Isobe, H. Moriya, M. Shoji, Y. Ito, H. Kuroda, and M. Sasaki, Int. Electron Devices Meet. Tech. Dig., (2002) 543.
[4] A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, and M. Taguchi, Int. Electron Devices Meet. Tech. Dig., (2005) 746.
[5] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. -S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U. -I. Chung, and J. T. Moon, Int. Electron Devices Meet. Tech. Dig., (2004) 587.
[6] I. G. Baek, D. C. Kim, M. J. Lee, H. J. Kim, E. K. Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S. Seo, J. H. Lee, J. C. Park,Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung, J. T. Moon, and B. I. Ryu, Int. Electron Devices Meet. Tech. Dig., (2005) 750.
[7] H. Sim, H. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E. -H. Lee, W. Kim, Y. Park, I. K. Yoo, and H. Hwang, Int. Electron Devices Meet. Tech. Dig., (2005) 758.
[8] C. C. Lin, J. S. Yu, C. Y. Lin, C. H. Lin, and T. Y. Tseng, Thin Solid Films, 516 (2007) 402.
[9] W. Y. Chang, Appl. Phys. Lett. , 92 (2008) 022110.
[10] B. J. Choi, J. Appl. Phys., 98 (2005) 033715.
[11] M. Y. Chan, Microelectronic Engineering, 85 (2008) 2420.
[12] K. A. Muller, and W. Berlinger, Physical Preview, 186 (1969) 361.
[13] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, D. Widmer, Appl. Phys. Lett., 77 (2000) 139.
[14] C. Rossel, G. I. Meijer, D. Bremauid, and D. Widmer, J. Appl. Phys., 90 (2001) 2892.
[15] J. W. Park, K. Jung, M. K. Yang, J. K. Lee, D. Y. Kim, J. W. Park, J. Appl. Phys., 99 (2006) 124102.
[16] C. Y. Liu, P. H. Wu, A. Wang, W. Y. Jang, J. C. Young, K. Y. Chiu, T. Y. Tseng, IEEE Electron Device Letters, 26 (2005) 351.
[17] T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, Y. Tokura, Appl. Phys. Lett., 86 (2005) 012107.
[18] C. Y. Liu, A. Wang, W. Y. Jang, T. Y. Tseng, J. Phys. , D, Appl. Phys. Lett., 39 (2006) 1156.
[19] C. C. Lin, B. C. Tu, C. C. Lin, C. H. Lin, T. Y. Tseng, IEEE Electron Device Letters, 27 (2006) 725.
[20] Rainer Waser, Regina Dittmann, Georgi Staikov, and Kristof Szot, Adv. Mater. , 21 (2009) 2632.
[21] Hsin-Hung Huang, Wen-Chieh Shih, and Chih-Huang Lai, APPLIED PHYSICS LETTERS 96, 193505 (2010).
[22] D. R. Lamb and P. C. Rundle, "A non-filamentary switching action in thermally grown silicon dioxide films", Br. J. Appl. Phys. 18, 29-32 (1967).
[23] I. S. Park et al., Jap. J. Appl. Phys. vol. 46, pp. 2172-2174 (2007).
[24] M. N. Kozicki, M. Yun, L. Hilt, A. Singh, J. Electrochem. Soc., (1999), 146.
[25] M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, B. P. Andreasson, Adv. Mater., 19 (2007) 2232.
[26] S. F. Karg, G. I. Meijer, J. G. Bednorz, C. T. Rettner, A. G. Schrott, E. A. Joseph, C. H. Lam,M. Janousch, U. Staub, F. La Mattina, S. F. Alvarado, D. Widmer, R. Stutz, U. Drechsler, D. Caimi, IBM J. Res. Dev., 52 (2008) 481.
[27] J. Y. Son, Y. H. Shin, Appl. Phys. Lett., 92 (2008) 222106.
[28] Debashis Panda, Chun-Yang Huang, and Tseung-Yuen Tseng, Appl. Phys. Lett. 100, 112901 (2012)
[29] Kuibo Yin, Mi Li, Yiwei Liu, Congli He, Fei Zhuge, Bin Chen, Wei Lu, Xiaoqing Pan, and Run-Wei Li, Appl. Phys. Lett. 97, 042101 (2010).
[30] M. Villafuerte, S. P. Heluani, G. Juárez, G. Simonelli, G. Braunstein, and S. Duhalde, Appl. Phys. Lett., 90 (2007) 052105.
[31] D. S. Lee, H. J. Choi, H. J. Sim, D. h. Choi et al. , IEEE Electron Device Letters, 26 (2005) 9.
[32] Toshihiro Nakamura, Surface & Coatings Technology, 201 (2007) 9275.
[33] R. Waser, M. Aono, Nat. Mater., 6 (2007) 833.
[34] C. Park, D. W. Kim, J. Korean Phys. Soc., 50 (2007) 1294.
[35] K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, C. S. Hwang, Appl. Phys. Lett., 91 (2007) 012907.
[36] I. H. Inoue, S. Yasuda, H. Akinaga, H. Takagi, Phys. Rev. B, 77 (2008) 035105.
[37] S. C. Chae, J. S. Lee, S. Kim, S. B. Lee, S. H. Chang, C. Liu, B. Kahng, H. Shin, D. W. Kim, C. U. Jung, S. Seo, M. J. Lee, T. W. Noh, Adv. Mater., 20 (2008) 1154.
[38] C. Y. Lin, C. Y. Wu, C. Y. Wu, and T. Y. Tsenga, C. Hu, J. Appl. Phys., 102 (2007) 094101.
[39] Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 85 (2004) 4073.
[40] R. Waer, J. Amer. Ceram. Soc., 74 (1991) 1934.
[41] I. Burn, S. M. Neirman and N. E. Cipollini, J. Mater. Sci. Lett., 4 (1985) 1152.
[42] J. P. Zhong, M. Y. Zhao and H. Wang , Ceram. Int., 16 (1990) 85.
[43] D. Dimos, R. W. Schwartz and S. J. Lockwood, J. Amer. Ceram. Soc., 77 (1994) 3000.
[44] D. K. Liang, ibid., 76 (1993) 2023.
[45] S. H. Paek, E. S. Lee, S. H. Kim, J. Y. Seong, J. P. Mah, C. S. Park, J. S. Choi , and J. H. Jung, J. Mater. Sci., 33 (1998) 1239.
[46] W. Y. Chang, Appl. Phys. Lett., 92 (2008) 022110.
[47] N. Xu, L. F. Liu, X. Sun, C. Chen, Y. Wang, D. D. Han, X. Y. Liu, R. Q. Han, J. F. Kang and B. Yu, Semicond. Sci. Technol., 23 (2008) 075019.
[48] Chikako Yoshida, Kohji Tsunoda, Hideyuki Noshiro, and Yoshihiro Sugiyama, Appl. Phys. Lett., 91 (2007) 223510.
[49] W. Y. Yang, W. G. Kim, S. W. Rhee, Thin Solid Films 517 (2008) 967.
[50] M. Y. Chan, T. Zhang, V. Ho, P. S. Lee, Microelectronic Engineering 85 (2008) 2420.
[51] D. S. Lee, D. J. Seong, I. Jo, F. Xiang, R. Dong, S. J. Oh, and H. S. Hwang, Appl. Phys. Lett., 90 (2007) 122104.
[52] K. M. Kim, B. J. Choi, D. S. Jeong, Appl. Phys. Lett., 89 (2006) 162912.
[53] S. Seo, M. J. Lee, D. C. Kim, S. E. Ahn, B. H. Park, Y. S. Kim, Appl. Phys. Lett., 87 (2005) 263507.
[54] Y. Hirose, H. Hirose, J. Appl. Phys., 47 (1976) 2767.
[55] A. Odagawa, H. Sato, I. H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura, T. Kanno, and H. Adachi, Phys. Rev. B, 70 (2004) 224403.
[56] S. Tsui, A. Baikalov, J. Cmaidalka, Y. Y. Sun, Y. Q. Wang, Y. Y. Xue, C. W. Chu, L. Chen, and A. J. Jacobson, Appl. Phys. Lett., 85 (2004) 317.
[57] M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, and N. Awaya, Appl. Phys. Lett. 89, 223509 (2006).
[58] D. Lee, D.-J. Seong, H. J. Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun, S. Seo, S. Heo, M. Jo, D.-K. Hwang, H. K. Park, M. Chang, and M. Hasan, Tech. Dig. - Int. Electron Devices Meet. 2006, 796.
[59] D. S. Jeong, H. Schroeder, and R. Waser, Appl. Phys. Lett. 89, 082909 (2006).
[60] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, J. Appl. Phys. 98, 033715 (2005).
[61] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 85, 4073 (2004).
[62] M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, Phys. Rev. Lett. 92, 178302 (2004).
[63] R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).
[64] Nuo Xu, Lifeng Liu, Xiao Sun, Xiaoyan Liu, Dedong Han, Yi Wang, Ruqi Han, Jinfeng Kang, and Bin Yu, Appl. Phys. Lett. 92, 232112 (2008)
[65] Jae-Wan Park, Kyooho Jung, Min Kyu Yang, Jeon-Kook Lee, Dal-Young Kim, and Jong-Wan Park, JOURNAL OF APPLIED PHYSICS 99, 124102 (2006).
[66] Chih-Yi Liu, Pei-Hsun Wu, Arthur Wang, Wen-Yueh Jang, Jien-Chen Young, Kuang-Yi Chiu, and Tseung-Yuen Tseng, IEEE ELECTRON DEVICE LETTERS, VOL. 26, NO. 6 (2005).
[67] Chun-Chieh Lin, Jung-Sheng Yu, Chih-Yang Lin, Chen-Hsi Lin, and Tseung-Yuen Tseng, Thin Solid Films 516, 402–406 (2007).
[68] Chih-Yi Liu1 and Tseung-Yuen Tseng, J. Phys. D: Appl. Phys. 40 (2007) 2157–2161.
[69] Chun-Chieh LIN, Chao-Cheng LIN, Bing-Chung TU, Jung-Sheng YU, Chen-Hsi LIN1, and Tseung-Yuen TSENG, Japanese Journal of Applied Physics Vol. 46, No. 4B, 2007, pp. 2153–2156.
[70] Chun-Chieh Lin, Bing-Chung Tu, Chao-Cheng Lin, Chen-Hsi Lin, Member, IEEE, and Tseung-Yuen Tseng, IEEE ELECTRON DEVICE LETTERS, VOL. 27, NO. 9, SEPTEMBER 2006.
[71] Kui Li, Yi dong Xia, Bo Xu, Xu Gao, Hongxuan Guo, Zhiguo Liu, and Jiang Yin, APPLIED PHYSICS LETTERS 96, 182904 (2010).
[72] S.S. Lin, J.L. Huang, P. Sajgaik, Surf. Coat. Technol. 185 (2004) 254.
[73] B.D. Ahn, S.H. OH, C.H. Lee, G.H. Kim, H.J. Kim, S.Y. Lee, J. Cryst. Growth 309 (2007) 128.
[74] D.H. Zhang, D.E. Brodie, Thin Solid Films 300 (1997) 30.
[75] J.D. Ye, S.L. Gu, S.M. Zhu, F. Qin, S.M. Liu, W. Liu, X. Zhou, L.Q. Hu, L.Q. Hu, R. Zheng, Y. Shi, Y.D. Zheng, J. Appl. Phys. 96 (2004) 5308.
[76] S.A. Studeniki, N. Golego, M. Cocivera, J. Appl. Phys. 87 (2000) 2413.

QR CODE