簡易檢索 / 詳目顯示

研究生: 陳麒容
Chi-Rong Chen
論文名稱: 具自然換向高功率雙向轉換器
High-Power Bidirectional DC/DC Converter with Natural Commutation
指導教授: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
口試委員: 呂錦山
Ching-Shan Leu
林景源
Jing-Yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 103
中文關鍵詞: 自然換向零電壓切換雙向直流/直流轉換器微電網系統
外文關鍵詞: natural commutation., zero-voltage-switching, Bidirectional DC/DC converter, micro-grid system
相關次數: 點閱:476下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要研究為應用於微電網系統之高功率雙向直流/直流轉換器,採用雙向升降壓式非隔離型電路架構作為電源電壓轉換及控制的功率級電路。此架構一般會將功率開關操作在硬切換,導致損耗提升,且會產生電磁干擾及高頻雜訊等問題。因此本論文提出一種控制策略,使功率開關具備零電壓切換特性。針對此架構提出的控制策略,其概念為控制功率開關交互切換,利用電感電流自然換向的特性;也就是提供導通路徑,使得電感電流在復歸為零時得以續流。此換向後的負向電流會迫使功率開關上寄生電容內所儲存的能量被釋放,達成零電壓切換特性,大幅地降低傳統硬切所造成的切換損失。特別是即使輕載時,也能輕易地以此方式,提升輕載時的轉換效率,達到全範圍負載高效率之目標。本論文詳細分析電路架構之動作原理,並依據設計準則實作一台2 kW具自然換向高功率雙向轉換器,其轉換效率於70%負載以上時均可達到96%以上。


This thesis proposes a high-power bidirectional DC/DC converter for micro-grid system applications. The power-stage circuit topology is a non-isolated buck-boost DC/DC converter. Conventionally, this topology is hard-switched, which results in significant switching losses, as well as induces electromagnetic interferences and high-frequency noises. Contrarily, a novel control strategy is proposed in this thesis, in which zero-voltage-switching (ZVS) of power switches can be realized with simple pulse-width-modulation. The term “natural commutation” here means that inductor current keeps flowing reversely through the switched-on path. This reversed current will accordingly release the energy stored in the parasitic capacitance of the power switches, which significantly reduces the switching loss. Specifically, even at light-load condition, the conversion efficiency can be improved easily by this control strategy and achieves high efficiency under wide-range load variations. The circuit topology and the operation principles are analyzed in detail in this thesis. According to the design rules, a 2 kW bi-directional converter is built to test its feasibility. The power efficiency is higher than 96 % .

摘 要 Abstract 誌 謝 目 錄 圖索引 表索引 第一章 緒論 1.1研究背景 1.2研究動機及目的 第二章 雙向轉換器原理簡介 2.1 非隔離型雙向轉換器 2.2 隔離型雙向轉換器 第三章 具自然換向高功率雙向轉換器動作原理 3.1柔性切換 3.2具自然換向升壓模式動作分析 3.2.1動作時序與區間說明 3.2.2升壓模式下零電壓切換 3.3 具自然換向降壓模式動作分析 3.3.1動作時序與區間說明 3.3.2降壓模式下零電壓切換 第四章 電路模擬與參數設計 4.1電路規格 4.2磁性元件設計考量 4.3功率開關元件設計 4.4輸出電容設計 4.5死域時間(DeadTime)設計 4.6電路模擬 4.6.1 降壓模式下電路模擬結果 4.6.2 升壓模式下電路模擬結果 第五章 實測波形與數據 5.1實測波形 5.1.1 降壓模式下的實作結果 5.1.2 升壓模式下的實作結果 5.2實測數據 5.2.1 降壓模式下的實作結果 5.2.2 升壓模式下的實作結果 第六章 結論與未來展望 6.1結論 6.2未來展望 參考文獻

[1] L. M. Tolbert, W. A. Peterson, C. P. White, T. J. Theiss and M. B. Scudiere, “A bi-directional DC-DC converter with minimum energy storage elements,” Industry Applications Conference, 2002. 37th IAS Annual Meeting. Conference Record of the vol.3, pp.1572 – 1577, 2002.
[2] N. Vasantha Gowri and G. Suresh Babu, “A novel bidirectional DC-DC converter drive,” 2013 International Conference on Smart Structures & Systems (ICSSS-2013), Chennai, INDIA, pp 19 – 23, March, 2013.
[3] F. A. Himmelstoss, “Analysis and comparison of half-bridge bidirectional DC-DC converters,” Power Electronics Specialists Conference, PESC 94 Record, 25th Annual IEEE, vol.2, pp 922 – 928 1994 .
[4] Y. X. Wang, F. F. Qin and Y. B. Kim “Bidirectional DC-DC converter design and implementation for lithium-ion battery application,” Power and Energy Engineering Conference (APPEEC), 2014 IEEE PES Asia-Pacific, pp 1 – 5, 2014
[5] J. K. Reed and G. Venkataramanan, “Bidirectional High Conversion Ratio DC-DC Converter,” Power and Energy Conference at Illinois (PECI), 2012 IEEE, pp 1 – 5,2012.
[6] A. A. Boora, F. Zare, G. Ledwich and A. Ghosh, “Bidirectional positive buck-boost converter,” Power Electronics and Motion Control Conference EPE-PEMC 2008, pp 723 – 727, 13th2008.
[7] R. M. Schupbach and J. C. Balda, “Comparing DC-DC converters for power management in hybrid electric vehicles,” Electric Machines and Drives Conference, 2003. IEMDC'03. IEEE International, pp 1369 – 1374, 2003.
[8] M. Zhu and F. L Luo “Development of Voltage Lift Technique on Double-Output Transformerless DC-DC Converter,” Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE, pp 1983 – 1988, 2007.
[9] R. Y. Duan, J. D. Lee, “High-efficiency bidirectional DC-DC converter with coupled inductor,” Power Electronics, IET, vol.5, pp 115 – 123, 2012.
[10] S. Waffler, M. Preindl and J. W. Kolar, “Multi-objective optimization and comparative evaluation of Si soft-switched and SiC hard-switched automotive DC-DC converters,” Industrial Electronics, 2009. IECON '09. 35th Annual Conference of IEEE, pp 3814 – 3821, 2009.
[11] J. T. Han, C. S. Lim, J. H. Cho, R. Y. Kim and D. S. Hyun, “A high efficiency non-isolated bidirectional DC-DC converter with zero-voltage-transition,” Industrial Electronics Society, IECON 2013 - 39th Annual Conference of the IEEE, pp 198 – 203, 2013.
[12] K. Harada, Y. shihara, T. Todaka, G. Alzamora, “A zero-voltage-switching bidirectional converter for PV systems,” Telecommunications Energy Conference, 2003. INTELEC '03. The 25th International, pp 14 – 19, 2003.
[13] E. Ribeiro, A. J. M. Cardoso, C. Boccaletti, “Fault diagnosis in non-isolated bidirectional half-bridge DC-DC converters,” Industrial Electronics Society, IECON 2014 - 40th Annual Conference of the IEEE, pp 4458 – 4463, 2014.
[14] J. Silvestre, “Half-bridge bidirectional DC-DC Converter for small Electric Vehicle,” International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp 884 – 888 , 2008.
[15] C. C. Lin, Y. L. Sheng and G. W. Wu, “Study of a non-isolated bidirectional DC-DC converter,” Power Electronics, IET, vol.6, pp 30 – 37, 2013.
[16] V. Yakushev, V. Meleshin and S. Fraidlin, “Full-bridge isolated current fed converter with active clamp,” Applied Power Electronics Conference and Exposition, 1999. APEC '99. Fourteenth Annual, pp 560 – 566, 1999.
[17] K. Wang, F. C. Lee and J. Lai, “Operation principles of bi-directional full-bridge DC/DC converter with unified soft-switching scheme and soft-starting capability,” Applied Power Electronics Conference and Exposition, 2000. APEC 2000. Fifteenth Annual IEEE, pp 111 – 118, 2000.
[18] Z. Ding, C. Yang, Z. Zhang, C. Wang and S. Xie, “A Novel Soft-Switching Multiport Bidirectional DC–DC Converter for Hybrid Energy Storage System,” Power Electronics, IEEE Transactions, vol.29, no.4, pp 1595 – 1609, 2014.
[19] J. Ge, Z. Zhao, J. Ma, F. He, L. Yuan and T. Lu, “Phase-shift control of isolated bidirectional DC-DC converters for unidirectional power flow,” Energy Conversion Congress and Exposition (ECCE), 2014 IEEE, pp 1099 – 1104, 2014.
[20] H. Fan and H. Li, “High-Frequency Transformer Isolated Bidirectional DC–DC Converter Modules With High Efficiency Over Wide Load Range for 20 kVA Solid-State Transformer,” Power Electronics, IEEE Transactions, pp 3599 – 3608 , 2011.
[21] M. Jain, M. Daniele, P. K. Jain, “A bidirectional DC-DC converter topology for low power application,” Power Electronics, IEEE Transactions, vol.15, no.4, pp 595 – 606 , 2000.
[22] S. J. Jang, T. W. Lee, W. C. Lee, C. Y. Won, “Bi-directional dc-dc converter for fuel cell generation system,” Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, vol.6, pp 4722 – 4728, 2004.
[23] H. S. Kim, M. H. Ryu, J. W. Baek, J. H. Jung, “High-Efficiency Isolated Bidirectional AC–DC Converter for a DC Distribution System,” Power Electronics, IEEE Transactions, vol.28, no.4, pp 1642 – 1654, 2013.
[24] A. Elasser, T. P. Chow, “Silicon carbide benefits and advantages for power electronics circuits and systems “ Proceedings of the IEEE, vol.90, no.6, June 2002.
[25] J. W. Palmour, R. Singh, R. C. Glass, O. Kordina and C. H. Carter, “Silicon carbide for power devices,” in Proc. 9th Int. Symp. Power Semiconductor Devices and ICs, pp. 25–32,1997.

無法下載圖示 全文公開日期 2020/07/11 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE