簡易檢索 / 詳目顯示

研究生: 陳柏榮
Bo-Rung Chen
論文名稱: 無直流偏磁之非對稱全橋轉換器
Asymmetrical Full-Bridge Converters without DC Bias
指導教授: 呂錦山
Ching-Shan Leu
口試委員: 林長華
Chang-Hua Lin
林景源
Jing-Yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 68
中文關鍵詞: 全橋轉換器非對稱控制機制降低電流漣波零電壓切換
外文關鍵詞: Full-bridge converter, asymmetrical control scheme, current ripple reduction, zero voltage switching
相關次數: 點閱:247下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統全橋轉換器被廣泛的使用在高輸入電壓與高功率的應用下。而許多的控制機制被應用在全橋轉換器下,如對稱控制、非對稱控制以及另一種非對稱控制。其中另一種非對稱控制很少受討論,故於本文作探討。
    全橋轉換器運用對稱控制已行之有年,然而對稱控制為硬切換操作,故會產生大的切換損失,連帶影響轉換效率並且限制功率密度。為了提升效率,非對稱全橋轉換器在這近十年內被成功的提出。因非對稱控制達成了零電壓切換,在開關上能夠明顯的降低切換損失。然而,因為非對稱控制在變壓器上傳遞的電壓不平均,故會產生直流磁偏的問題,使變壓器容易飽和,進而失去限制電流的能力。為了解決直流磁偏的問題,無直流磁偏之非對稱全橋轉換器被提出。
    然而,電壓源形式的轉換器為斷續的輸入電流,導致大的di/dt雜訊,其中電磁干擾為主要的干擾來源,因此,大的濾波元件將去降低雜訊的臨界值。而為了解決斷續的輸入電流漣波,無直流磁偏之低輸入電流漣波之非對稱全橋轉換器被提出。延續AFB轉換器的優點,RR-AFB轉換器因內建降低電流漣波機制,使的輸入電流漣波可以明顯地降低。因此,可以使用更小的EMI濾波器級來提升功率密度。
    為了證明所提出技術的可行性,從電路工作原理進行理論與實務上的分析,並訂定300~400V的輸入電壓範圍,12V/30A/360W的輸出規格與100 kHz的操作頻率來做以驗證。


    A conventional full-bridge converter has been widely used for high input-voltage high-power applications. Several control schemes have been applied to full bridge converter, such as symmetrical control, phase shift control, and asymmetrical control.
    Employing symmetrical control, full-bridge (FB) has been used for a long time. It suffers from large switching losses due to its hard-switching operation. It will impact the conversion efficiency and limit power density.
    To improve the efficiency, asymmetrical full-bridge (AFB) converter was successfully proposed instead in the last decades. Because it can achieve ZVS operation, the switching turn-on losses are significantly reduced. However, a DC bias occurs resulting in adding a gap on the transformer.
    To achieve ZVS, an alternative AFB converter without DC bias is proposed in this thesis. It will be investigated and discussed in Chapter 2.
    However, the proposed converter has pulsating input currents resulting in the generation of high di/dt noise, which is one of the noise sources of the electromagnetic interference (EMI) problem. Consequently, large filter components are required to attenuate the noise level within the threshold value. To reduce the pulsating input-current ripple, a low-input current-ripple reduction (RR-AFB) converter without DC bias is also proposed in Chapter 3.
    To demonstrate the feasibility of the operational principle, circuit analysis and the experiments of the presented converters with 300~400 V input voltage range, 12 V/30 A/ 360 W output, 100 kHz switching frequency, are built to verify theoretical analysis.
    Index Terms: full-bridge converter, asymmetrical control scheme, current ripple reduction, zero voltage switching (ZVS)

    Abstract Acknowledgement Table of Content List of Figures List of Table Chapter 1.Introduction 1.1 Background and Motivation 1.2 Objectives of the Thesis 1.3 Organization of the Thesis Chapter 2. Asymmetrical Full-Bridge Converter without DC Bias 2.1 Introduction 2.2 Operating Principle 2.3 Circuit Analysis 2.3.1 Voltage gain 2.3.2 Semiconductors voltage stress 2.3. 3 Input current ripple 2.3.4 Zero voltage switching condition 2.3.5 Required dead time 2.3.6 Duty cycle loss 2.4 Circuit Design 2.4.1 Transformer TR 2.4.2 Output inductor Lo 2.4.3 Output capacitor Co 2.4.4 Power MOSFETs Q1, Q2, Q3, and Q4 2.4.5 Rectifier diodes D1 and D2 2.5 Experimental Results 2.6 Summary Chapter 3. Low Input Current Ripple Reduction Asymmetrical Full-Bridge Converter without DC Bias 3.1 Introduction 3.2 Operating Principle 3.3 Circuit Analysis 3.3.1 Voltage gain 3.3.2 Semiconductors voltage stress 3.3.3 Input current ripple reduction 3.3.4 Zero voltage switching condition 3.3.5 Required dead time 3.3.6 Duty cycle loss 3.4 Circuit Design 3.5 Experimental Results 3.6 Summary Chapter 4. Conclusions and Future Study 50 4.1 Conclusions 4.2 Future Study Reference

    [1] S. A. Liang, ‘‘Low cost and high efficiency PC power supply design to meet 80 plus requirement’’ Industrial Technology, 2008. ICIT 2008. IEEE International Conference, 21-24 April 2008. pp. 1-6.
    [2] 80 PLUS program [Online]. Available :http://www.80plus.org.htm
    [3] W. Fan and G. Stojcic, “Simple zero voltage switching full-bridge DC bus converters,” IEEE Applied Power Eletronics Conference and Exposition, vol. 3, Mar. 2005, pp.1611-1617.
    [4] G. C. Hsieh, J. C. Li, M. H. Liaw, J. P. Wang and Tsai-Fu Hung, “A study on full-bridge zero-voltage-switched PWM converter: design and experimentation,” IEEE Industrial Electronics, Control, and Instrumentation, vol.2, pp. 1281-1285, Nov. 1993.
    [5] J. A. Sabate, V. Vlatkovic, R. B. Ridley and F. C. Lee, “High-voltage, high-power, ZVS, full-bridge PWM converter employing an active snubber,” IEEE Applied Power Eletronics Conference and Exposition, Mar. 1991, pp. 158-163.
    [6] J. A. Sabate, V. Vlatkovic, R. B. Ridley, F. C. Lee and B. H. Cho, “Design considerations for high-voltage high-power full-bridge zero-voltage-switched PWM converter,” IEEE Applied Power Eletronics Conference and Exposition, Mar. 1990, pp. 275-284.
    [7] R. Redl, N. O. Sokal and L. Balogh, “A novel soft-switching full-bridge DC/DC converter: analysis, design considerations, and experimental results at 1.5 kW, 100 kHz,” IEEE Transaction on Power Electronic, vol.6, no.3, pp. 408-418, Jul. 1991.
    [8] J. B. Wang, R. Li and J. Chen, “Efficiency comparison of the full bridge converters in considered magnetic saturation,” IEEE Industrial Electronics, Control, and Instrumentation, pp. 717-722, Nov. 2008.
    [9] L. H. Mweene, C. A. Wright and M. F. Schlecht, “A 1 kW 500 kHz front-end converter for a distributed power supply system,” IEEE Transaction on Power Electronic, vol.6, no.3, pp. 398-407, Jul. 1991.
    [10] C. Iannello, L. Shiguo and I. Batarseh, “Small-signal and transient analysis of a full-bridge, zero-current-switched PWM converter using an average model,” IEEE Transaction on Power Electronic, vol.18, no.3, pp. 793-801, May. 2003.
    [11] T. F. Wu, C. T. Tsai, Y. M. Chen and C. L. Shen, “A Current-Doubler Rectifier with Coupled Inductors for High Step-Down Applications,” IEEE Power Electronics Specialists Conference, Jun. 2006, pp. 18-22.
    [12] W. Chen, F. C. Lee, M. M. Jovanovic and J. A. Sabate, “A comparative study of a class of full bridge zero-voltage-switched PWM converters,” IEEE Applied Power Eletronics Conference and Exposition, vol.2, Mar. 1995, pp. 893-899.
    [13] Y. Jang and M. M. Jovanovic, “A new PWM ZVS full-bridge converter,” IEEE Applied Power Eletronics Conference and Exposition, Mar. 2006, pp. 19-23.
    [14] P. K. Jain, W. Kang, H. Soin and Y. H. Xi, “Analysis and design considerations of a load and line independent zero voltage switching full bridge DC/DC converter topology,” IEEE Transaction on Power Electronic, vol.17, no.5, pp. 649-657, Sep. 2002.
    [15] Z. Yao, L. Xiao and Y. Yan, “A family of zero-voltage-switching DC-DC transformers,” IEEE Applied Power Eletronics Conference and Exposition, Mar. 2006, pp. 19-23.
    [16] F. H. Zhang, H. H. Qin, H. H. Wang and Y. G. Yan, “Freewheeling current in push-pull forward converter,” IEEE Power Electronics Specialists Conference, vol.1, Jun. 2003, pp. 353-358.
    [17] D. Jia, T. Xu, Z. Ju and Q. Niu, “Strategy on Eliminating Transformer Bias Magnet in Push-Pull Forward Converter,” IEEE Power and Energy Engineering Conference, Mar. 2009, pp. 27-31.
    [18] M. Ye, P. Xu, B. Yang and F. C. Lee, “Investigation of topology candidates for 48 V VRM,” IEEE Applied Power Eletronics Conference and Exposition, vol.2, 2002, pp. 699-705.
    [19] Paul Imbertson and Ned Mohan, “Asymmetrical duty cycle permits zero
    Switching loss in PWM circuits with noconduction loss penalty’’ in proc. IEEE Conference, 1991, pp. 1061-1066.
    [20] Imbertson, P and Mohan, N, ‘‘New PWM Converter Circuits Combining Zero Switching Loss with Low Conduction Loss’’ in proc. Telecommunications Energy Comference, 1990, pp. 179-185.
    [21] Chudjuarjeen, S and Koompai, C, ‘‘Asymmetrical control with Phase Lock Loop for Induction Cooking Appliances’’ in proc. Telecommunications and Information Technology conf. ECTI-CON 2008, vol. 2, 2008, pp. 1013-1013.
    [22] Pyosoo Kim, Sewan Choi and Jeongguen Kim, ‘‘An Inductorless Asymmetrical ZVS Full Bridge Converter for Step-up applications with wide input voltage range’’ in proc. Energy Conversion Congress and Exposition. ECCE, 2010, pp. 1945-1951.
    [23] Hyun-Lark Do, ‘‘Asymmetrical Full-bridge Converter With High-Voltage Gain’’ Power Electronics, vol. 27, pp. 860-868, Feb. 2012.
    [24] Yuancheng Ren, Ming Xu, Sterk, D and Lee, F.C. ‘’1 MHz self-driven ZVS full-bridge converter for 48 V power pods,’’ IEEE conference, Vol. 4, 2003, pp. 1801-1806.
    [25] Lin, B.-R and Chen, J.-J, ‘‘Analysis of the interleaved APWM converter less power switches’’ in proc. Electrical Machines and Systems International Conference. ICEMS , 2009, pp. 1-6.
    [26] Bor-Ren Lin, Chau-Shing Wang, Jyun-Ji Chen and Kun-Liang Shih, ‘‘Interleaved PWM Active-Clamping Buck-Type converter’’ in proc. Power Electronics Conference. IPEC, 2010, pp. 68-75.
    [27] J. Cruz, M. Castilla, J. Miret, J. Matas, J. M. Guerrero, “Averaged large-signal model of single magnetic push-pull forward converter with built-in input filter,” IEEE International Symposium on Industrial Electronics, vol.2, pp. 1023-1028, May. 2004.
    [28] Yang, L. Amoroso, F. C. Lee and P. L. Wong, “A novel high-input-voltage, high efficiency and past transient voltage regulator module-push-pull forward converter,” IEEE Applied Power Eletronics Conference and Exposition, vol.1, pp. 279-283, Mar. 1999.
    [29] P. Xu, M. Ye and F. C. Lee, “Single magnetic push-pull forward converter featuring built-in input filter and coupled-inductor current doubler for 48 V VRM,” IEEE Applied Power Eletronics Conference and Exposition, vol.2, pp. 843-849, 2002.
    [30] J. Cruz, M. Castilla, J. Miret, J. Matas and J. L. Sosa, “Control techniques for the single magnetic push-pull forward converter with built-in input filter,” IEEE International Symposium on Industrial Electronics, vol.2, pp. 769-774, Jun. 2005.
    [31] E. Herbert, “Analysis of the near zero input current ripple condition in a symmetrical push-pull power converter,” IEEE Transaction on High Frequency Power Conversion, pp. 357-371, 1989.
    [32] C. S. Leu, “Improved forward topologies for DC-DC applications with built-in input filter,” Ph.D. dissertation, Virginia Polytechnic Institute and State University, Electrical and Computer Engineering Dept., Virginia, 2006.
    [33] C. S. Leu, “A novel full-bridge configuration for high-power applications: built-in input filter full-bridge converter (BIFFBC),” IEEE Power Electronics Specialists Conference, vol.1, pp. 763-768, Jun. 1997.
    [34] C. S. Leu ‘‘Low Voltage Stress Power Converter,’’ U.S. Patent 7,515,439, Apr. 7, 2009
    [35] TDK’s European Website for Electronic Components & Systems [Online]. Available :http://www.tdk.co.jp/tefe02/e141.pdf.
    [36] Magnetic power Cores, Technical Data, http://www.dongbufinechem.com.
    [37] “SIMPLIS reference manual” Catena software Ltd. http://www.catena.uk.com/site/downloads/manuals.htm.

    無法下載圖示 全文公開日期 2019/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE