簡易檢索 / 詳目顯示

研究生: 彭凱奇
Kai-chi Peng
論文名稱: 二氧化鈦奈米粉末於高分子鑽石複合研磨盤之研磨性能研究
Study on the Grinding Performance of Polymer-Based Diamond Disk with TiO2 Nano-Powders
指導教授: 鍾俊輝
Chun-hui Chung
口試委員: 郭俞麟
Yu-lin Kuo
陳品銓
Pin-chuan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 90
中文關鍵詞: 聚氨酯奈米二氧化鈦表面粗糙度摩擦係數轉移膜
外文關鍵詞: Polyurethane Nano-composite, Nano-TiO2, Taguchi Method, Transfer Film, Diamond Disk.
相關次數: 點閱:730下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要著重在以熱壓技術製作鑽石複合研磨盤,實驗使用聚氨酯(PU)高分子材料為研磨盤之基材,分別添加不同比例鑽石磨粒與奈米二氧化鈦於基材內,實驗利用田口方法找出最佳研磨盤製作參數,以L18直交表,即不同成份比例之鑽石研磨盤實際進行研磨實驗,量測不同成分比例鑽石研磨盤研磨試片表面粗糙度值及摩擦係數變化趨勢進行探討,得知試片表面粗糙度會隨研磨時間增加而有下降現象,且根據表面粗糙度田口回應表及變異數分析之結果,最佳化製程參數鑽石重量比例為0.04g、熱壓壓力為210N、鑽石形狀尺寸為Type 2,而摩擦係數趨勢方面,TiO2添加比例0.09g穩定程度較添加比例0.045g好,更優於未添加。
而研磨盤在研磨過程中伴隨著磨耗現象產生,因此本實驗進一步針對聚氨酯基材進行磨耗實驗,實驗得知PU基材磨耗率約為PU加TiO2複合材近兩倍,且發現高分子基材與碳鋼在磨耗過程中,於接觸界面會生成轉移膜,轉移膜具有優良之抗磨耗性、剪力作用,其代表添加奈米TiO2顆粒之複合材料,其基材表現出較高耐磨損性和較低摩擦係數表現,可大幅增強基材之承載能力。


In this study, the effect of TiO2 Nano-powders in the polymer-based diamond disk is investigated. The disk was made by compression molding technology. The polyurethane was used as the matrix material of the diamond grinding disk and nano-TiO2 was also added into the composite with different proportions. Taguchi method was employed to design the experiments. The surface roughness and friction coefficient were measured and analyzed by ANOVA method. The results show the optimal conditions for the diamond disk are diamond weight of 0.04 g, the compression force of 210 N, and the RB type 2 diamond powders with the mean size of 7.41 μm. In addition, the TiO2 added diamond disk is much stable than the others.
In the tribological experiments of polyurethane with and without TiO2 Nano-powders, the results show that the wear rate of pure polyurethane is about two times than the polyurethane with TiO2. It was also found that the transfer film was generated on the surface of steel. The formation of transfer film can increase wear resistance and produce lower shear performance. The results show that when nano-TiO2 particles are added to the composite material, the matrix has high wear resistance and low friction coefficient performance, which significantly enhance the carrying capacity of the polyurethane Nano-composite.

摘要 I ABSTRACT II 致謝 III 目錄 IV 表索引 VII 圖索引 VIII 第1章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 2 1.3 論文架構 4 第2章 文獻回顧 5 2.1 添加奈米TiO2之特性表現 5 2.2 磨粒加工 6 2.3 固定磨粒高分子複合研磨盤 7 第3章 實驗方法與設備 10 3.1 研磨盤製作與實驗材料製備 12 3.1.1 鑽石研磨盤之組成成分 12 3.1.1.1 聚氨酯(Polyurethane)基材 12 3.1.1.2 聚氨酯化學鍵結方式及相關性質探討 13 3.1.1.3 粉末類型 14 3.2 田口實驗設計規劃 17 3.3 混料及聚氨酯熱壓成型 21 3.3.1 壓鑄設備、模具與研磨試片 21 3.3.2 聚氨酯研磨盤製程混料步驟 23 3.3.3 熱壓實驗步驟 24 3.4 複合研磨盤性能測試 28 3.4.1 迴轉式磨耗試驗機與碳鋼環試件 28 3.4.2 環-盤對實驗原理 30 3.4.3 研磨實驗方法及步驟 31 第4章 實驗結果與討論 33 4.1 田口實驗 33 4.1.1 田口表面粗糙度實驗結果 34 4.1.2 田口摩擦係數實驗結果 37 4.2 變異數分析(ANOVA) 40 4.2.1 表面粗糙度變異數分析 41 4.2.2 摩擦係數變異數分析 42 4.3 田口實驗確認與分析 43 4.3.1 最佳組合推定及驗證 43 4.4 田口實驗結果討論 46 4.4.1 鑽石重量比例控制因子分析 46 4.4.2 熱壓壓力控制因子分析 49 4.4.3 鑽石形狀尺寸控制因子分析 51 第5章 聚氨酯研磨盤基材磨耗 55 5.1 聚氨酯基材磨損表面分析 55 5.2 TiO2粉末對聚氨酯基材磨耗特性之影響 68 5.3 TiO2粉末對於鑽石研磨盤性能之影響 70 第6章 結論與未來展望 74 6.1 結論 74 6.2 未來展望 76 參考文獻 78 附錄A 碳鋼環試片表面粗糙度 80 附錄B 高分子鑽石複合研磨盤磨耗量 84 附錄C 鑽石粒徑分析表 85 附錄D 摩擦係數變化值 88

[1]V. H. Nguyen, A. J. Hof, H. Van Kranenburg, P. H. Woerlee, F.Weimar, “Copper chemical mechanical polishing using a slurry-free technique, ” Microelectronic Engineering 55, pp.305–312, 2001.
[2]J. J. Gagliardi, “An introduction to fixed abrasive CMP, Semiconductor CMP group, 3M abrasive system division, 1999.
[3]J. hoi, H. Kim, J. Park, S. Chung, H. Jeong, M. Kinoshita, “A study on the manufacture of the next generation CMP pad with a uniform shape using the micro-molding method, ” ISAAT, 2003.
[4]Lam-Plan S.A., 2005, “Lapping And Polishing Device”, United States Patent, NO.6837780 B1.
[5]Struers A/S, 2000, “Grinding/Polishing Cover Sheet For Placing On A Rotatable Grinding/Polishing Disk”, United States Patent, NO.6019672.
[6]L. Liu, M. Luan, C. Li, “Application of TiO2 materials in polyurethane compound, ” China Elastomerics, 2012.
[7]H. Mahfuz, V. K. Rangari, M. S. Islam, S. Jeelani, “Fabrication, synthesis and mechanical characterization of nanoparticles infused polyurethane foams, ”Composites Part A: Applied Science and Manufacturing, Vol 35, Issue 4, pp.453–460, 2004.
[8]J. K. Burdett, T. Hughbands, J. M. Gordon, J. W. Jr. Richardson, J. V. Smith, “Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K,” Journal of the American Chemical Society, Vol. 109, pp. 3639, 1987.
[9]J. Williams, Engineering Tribology (1th Ed.), 2005.
[10]田口玄一,陳耀茂譯,田口實驗計畫法,滄海書局,1997。
[11]李輝煌,田口方法-品質設計的原理與實務,高立圖書有限公司,2009。
[12]洪瑞庭,塑膠加工技術與工程,高立圖書有限公司,1987。
[13]劉大佼,高分子加工原理與應用,揚智文化,1997。
[14]吳冬友,楊玉坤,基礎統計學,三版,五南出版社,2005。
[15]伊保內編著,洪榮哲譯,實用塑膠學,全華圖書股份有限公司,1993。
[16]K. Friedrich, A. K. Schlarb, Tribology of polymeric nancomposites:friction and wear of bulk materials and coatings (1th Ed.), Oxford, New York: Elsevier, 2008.
[17]S. Bahadur, C. Sunkara, “Effect of transfer film structure, composition and bonding on the tribological behavior of polyphenylene sulfide filled with Nano particles TiO2, ZnO, CuO and SiC,” Wear, Vol. 258, pp. 1411–1421, 2005.
[18]李紹雄,劉益軍,聚氨酯樹酯及其應用,化學工業出版社。
[19]劉運學,王楊松,范兆榮,TiO2填充聚氨酯彈性體複合材料的性能,第25卷第10期,2009。
[20]葉思霞,奈米二氧化鈦/水性聚氨酯複合材料的研究,第37卷第7期,2009。
[21]H. Mahfuz, K. Rangariv, M.S. Islam, “Fabrication, synthesis and mechanical characterization of nanoparticles infused polyurethane foams,” Composites, Vol. 35(4), pp. 453-460, 2004.
[22]H. Mahfuz, M. S. Islam, V. K. Rangar, et al, “High strain rate response of sandwich composites with Nano phased cores,” Apple Composite Material, Vol. 12(3-4), pp. 193-211, 2005.

QR CODE