簡易檢索 / 詳目顯示

研究生: 黃琬瑜
Wan-Yu Huang
論文名稱: 承載丙烯酸硫代碳酸聚氨酯(PUAT)寡聚物的LFP正極及其固態鋰金屬電池充放電表現
The Positive LFP Electrode Loaded with PUAT Oligomer and its Solid-State Lithium Metal Battery Cycling Performances
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 劉如熹
Ru-Shi Liu
陳崇賢
Chorng-Shyan Chern
蔡秉均
Ping-Chun Tsai
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 108
中文關鍵詞: 複合固態電解質丙烯酸硫代碳酸聚氨酯複合正極固態鋰金屬電池固態電解質界面
外文關鍵詞: Composite solid-state electrolyte, Polyurethane-acrylate-thiocarbonate, Composite cathode, Solid-state lithium metal battery, Solid electrolyte interface
相關次數: 點閱:203下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以鋰金屬為陽極、PUAT-FS為電解質、LFP-PUAT為陰極。PUAT-FS由70wt%丙烯酸硫代碳酸聚氨酯(PUAT)寡聚物,與支撐材料聚偏氟乙烯-六氟丙烯(PVdF-HFP)以重量比1:1,添加30 wt%的雙氟磺酼亞胺鋰(LiFSI)和20wt%鋰鑭鋯鉭氧(LLZTO)所組成,其電化學窗口為4.6V。
PUAT寡聚物分子量在6000-7000 gmol-1,結構上具備許多帶負電的官能基,因此陰極LFP摻混PUAT後有助於內部鋰離子的傳遞,也可裝載額外的循環鋰,使電池的電容量值增加。充放電測試中,第一圈(也稱做長成圈)進行較低電流充放電,可提高整體電池比電容量值,有助於生成優異的SEI,可提高庫倫效率,令電池更快達到穩態。
PUAT-FS在室溫下離子導電率為0.44 mS cm-1,LFP-PUAT電池於室溫下第一圈充放電以0.1C電流進行,在0.1C、0.2C、0.3C和0.5C電池結果中,0.1C電流下的電池具有最佳電池表現,其最大電容值為181 mAh g-1,在190圈循環後電容衰退率為每圈0.078%。LFP-PUAT電池在室溫下無法承受高電流的充放電循環,因此提高環境溫度到50℃,此時離子導電率達0.7 mS cm-1,可承受超過1C電流的充放電循環。
50℃下,以0.5C電流進行第一圈(長成圈)充放電,在1C、2C和3C結果中,在1C電流下最為優秀,其循環圈數可超過500圈,圈數壽命(電容衰退率達80%時)在第384圈,最大電容值為171 mAh g-1,在500圈時電容衰退率為每圈0.074%。3C電池充放電速度快,所需時間短,循環過程中庫倫效率可穩定達99%,高電流容易造成鋰枝晶生長快速,使電池短路,導致3C電池循環壽命僅190圈。顯然,與商用的鋰電池相比,LFP-PUAT電池在循環壽命與電容量衰退率上仍需加強。


In this thesis research, our batteries have been assembled with lithium metal anode, composite solid-state electrolyte PUAT-FS, and cathode LFP-PUAT. The PUAT-FS electrolyte is made of 70 wt% PUAT oligomer and PVdF-HFP macromolecule at weight ratio 1:1 (w/w), plus 30 wt% LiFSI. Additional 20 wt% LLZTO is added to the electrolyte. The potential window of PUAT-FS is 4.6 V.
The as-prepared PUAT is featured with low molecular weight, 6000-7000 g mol-1. Many functional groups of negative polarity are designed on the PUAT molecular structure, such that the cathode doped with PUAT may improve the lithium ion transport, and enhance the cathode capacity. When the cell is cycled galvanostatically, the first cycle of charge/discharge is executed at low current to facilitate a superior SEI formation, which is also known as the formation cycle. Formation at low current establishes the cycle stability in high-current subsequent charge/discharge, also increases the specific capacity and coulombic efficiency.
In cycling at room temperature, we set the first charge/discharge process at 0.1C. Among the cycle results at 0.1C, 0.2C, 0.3C, 0.5C, the LFP-PUAT battery displays the best charge/discharge behavior at 0.1C, since electrolyte conductivity is merely 0.44 mS cm-1. The maximum capacity reaches 181 mAh g-1. Its capacity fading rate is 0.078% per cycle after 190 cycles. At room temperature, the LFP-PUAT cell cannot be cycled properly at high currents. Raising the cycling temperature to 50 ℃, with electrolyte conductivity 0.7 mS cm-1, the LFP-PUAT cell is allowed to operate at current exceeding 1C.
In cycling at 50 ℃, we set the current of formation cycle, 0.5C. Cycling results at 1C, 2C, and 3C indicate that 1C cycling exhibits the ideal energy storage behavior. Its total cycle number exceeds 500 cycles, with a maximum capacity 171 mAh g-1. The cycle life, defined as capacity retention less than 80%, reaches 384 cycles. The capacity fading rate is 0.074% per cycle. At high current cycling, 3C, the charging/discharging time is shorter than those of 1C and 2C, and the coulombic efficiency still reaches 99%. Nonetheless, high current encourages dendrite growth, leading to short cycle life, 190 cycles only. Evidently, our solid state battery, LFP-PUAT cell, the cycle life and capacity fade performance still require substantial improvements, in comparison with those commercially available lithium ion batteries.

摘要 I Abstract III 目錄 V 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 11 2.1固態電解質 (SSE) 11 2.1.1 複合固態電解質 (CSSE) 15 2.1.2鋰鹽LiFSI 15 2.1.3丙烯酸硫代碳酸聚氨酯 (PUAT) 16 2.2陰極—磷酸鋰鐵 (LiFePO4)及三元材料 17 2.2.1寡聚物PUAT與鋰鹽LiTFSI之正極摻混 19 2.3固態電解界面 (SEI) 19 2.3.1 電流與溫度對SEI之影響 19 第三章 實驗方法與步驟 22 3.1 實驗藥品與儀器設備 22 3.1.1 實驗藥品 22 3.1.2 實驗耗材與儀器設備 24 3.1.3 材料鑑定之儀器設備 25 3.1.4 電化學測試儀器與設備 25 3.2 實驗步驟 26 3.2.1丙烯酸硫代碳酸聚氨酯(Polyurethane-acrylate-thiocarbonate, PUAT)之合成 26 3.2.2固態電解質之製備 27 3.2.3正極極片之製備 27 3.2.4固態鋰金屬鈕扣電池之組裝 28 3.3丙烯酸硫代碳酸聚氨酯(PUAT)之材料鑑定與分析 29 3.3.1 PUAT之結構鑑定 29 3.4固態電解質(PUAT-FS)之特性鑑定與分析 30 3.4.1 PUAT-FS之熱分析 30 3.4.2 PUAT-FS之電化學分析 31 3.4.3 PUAT-FS之交流阻抗與離子導電率 32 3.5鋰金屬與固態電解質之界面(SEI)鑑定分析 34 3.5.1 SEI組成之鑑定分析 34 3.5.2 SEI表面之形態測定 35 3.5.3 SEI對於電池表現之影響分析 35 3.5.4界面穩定性之分析 36 3.6全固態鋰電池之充放電過程 37 第四章 結果與討論 39 4.1聚氨酯丙烯酸丁酯(PUAT)性質分析 39 4.1.1聚氨酯丙烯酸丁酯(PUAT)之結構鑑定 39 4.2複合固態電解質PUAT-FS之性質分析 41 4.2.1複合固態電解質PUAT-FS之熱分析 41 4.2.2複合固態電解質PUAT-FS之電化學窗口 43 4.3固態鋰金屬LFP電池之充放電 45 4.3.1以低電流進行第一圈循環對於電池整體表現之影響 45 4.3.2摻混PUAT與LiTFSI正極的LFP-PUAT電池循環表現 49 4.3.2.1室溫下低循環電流之LFP-PUAT電池表現 49 4.3.2.2高溫下高電流之LFP-PUAT電池表現 57 4.4 PUAT作陰極之循環阻抗分析 64 4.5陽極-電解質界面(SEI)之組成、性質分析 66 4.5.1陽極-電解質界面(SEI)之型態分析 66 4.5.2固態電解質界面(SEI)之組成分析 71 4.5.3固態電解質界面(SEI)穩定性分析 78 第五章 結論 80 參考文獻 83

[1] Chen,Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; Li, B. A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2021, 59, 83-99.
[2] Huang, W.; Feng, X.; Han, X.; Zhang, W.; Jiang, F. Questions and Answers Relating to Lithium-Ion Battery Safety Issues. Cell Rep. Phys. Sci. 2021, 2, 100285.
[3] Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review. Energy Storage Mater. 2018, 10, 246-267.
[4] Finegan, D. P.; Scheel, M.; Robinson, J. B.; Tjaden, B.; Hunt, I.; Mason, T. J.; Millichamp, J.; Michiel, M. D.; Offer, G. J.; Hinds, G.; Brett, D. J. L.; Shearing, P. R. In-Operando High-Speed Tomography of Lithium-Ion Batteries during Thermal Runaway. Nat. Commun. 2015, 6, 6924.
[5] Chen, Z.; Xiong, R.; Lu, J.; Li, X. Temperature Rise Prediction of Lithium-Ion Battery Suffering External Short Circuit for All-Climate Electric Vehicles Application. Appl. Energy 2018, 213, 375-383.
[6] Sun, C.; Liu, J.; Gong, Y.; Wilkinson, D. P.; Zhang, J. Recent Advances in All-Solid-State Rechargeable Lithium Batteries. Nano Energy 2017, 33, 363-386.
[7] Dong, K.; Xu, Y.; Tan, J.; Osenberg, M.; Sun, F.; Kochovski, Z.; Pham, D. T.; Mei, S.; Hilger, A.; Ryan, E.; Lu, Y.; Banhart, J.; Manke, I. Unravelling the Mechanism of Lithium Nucleation and Growth and the Interaction with the Solid Electrolyte Interface. ACS Energy Lett. 2021, 6, 1719-1728.
[8] Xu, L.; Li, J.; Shuai, H.; Luo, Z.; Wang, B.; Fang, S.; Zou, G.; Hou, H.; Peng, H.; Ji, X. Recent Advances of Composite Solid-State Electrolytes for Lithium-Based Batteries. J. Energy Chem. 2022, 67, 524-548.
[9] Chen, W. P.; Duan, H.; Shi, J. L.; Qian, Y.; Wan, J.; Zhang, X. D.; Sheng, H.; Guan, B.; Wen, R.; Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Bridging Interparticle Li+ Conduction in a Soft Ceramic Oxide Electrolyte. J. Am. Chem. Soc. 2021, 143, 5717-5726.
[10] Yue, J.; Han, F.; Fan, X.; Zhu, X.; Ma,Z.; Yang, J.; Wang, C. High-Performance All-Inorganic Solid-State Sodium–Sulfur Battery. ACS Nano 2017, 11, 4885–4891.
[11] Pan, H.; Cheng, Z.; He, Zhou, H. A Review of Solid-State Lithium–Sulfur Battery: Ion Transport and Polysulfide Chemistry. Energy Fuels 2020, 34, 11942-11961.
[12] Ponnada, S.; Kiai, M. S.; Gorle, D. B.; Rajagopal, S.; Andra, S.; Nowduri, A.; Muniasamy, K. Insight into Lithium–Sulfur Batteries with Novel Modified Separators: Recent Progress and Perspectives. Energy Fuels 2021, 35, 11089-11117.
[13] Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A. A lithium Superionic Conductor. Nat. Mater. 2011, 10, 682-686.
[14] Muramatsua, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Structural Change of Li2S–P2S5 Sulfide Solid Electrolytes in the Atmosphere. Solid State Ionics 2011, 182, 116-119.
[15] Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778-7781.
[16] Kotobuki, M.; Munakata, H.; Kanamura, K.; Sato, K.; Yoshida, T. Compatibility of Li7La3Zr2O12 Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode. J. Electrochem. Soc. 2010, 157, A1076-A1079.
[17] KC, S.; Longo, R. C.; Xiong, K.; Cho, K. Point Defects in Garnet-Type Solid Electrolyte (c-Li7La3Zr2O12) for Li-Ion Batteries. Solid State Ionics 2014, 261, 100-105.
[18] Chen, L.; Huang, Y. F.; Ma, J.; Ling, H.; Kang, F.; He, Y. B. Progress and Perspective of All-Solid-State Lithium Batteries with High Performance at Room Temperature. Energy Fuels 2020, 34, 13456-13472.
[19] Zha, W.; Chen, F.; Yang, D.; Shen, Q.; Zhang, L. High-Performance Li6.4La3Zr1.4Ta0.6O12/ Poly(ethylene oxide)/Succinonitrile Composite Electrolyte for Solid-State Lithium Batteries. J. Power Sources 2018, 397, 87-94.
[20] Wang, X.; Zhang, Y.; Zhang, X.; Liu, T.; Lin, Y. H.; Li, L. L.; Shen, Y.; Nan, C. W. Lithium-Salt-Rich PEO/Li0.3La0.557TiO3 Interpenetrating Composite Electrolyte with Three-Dimensional Ceramic Nano-Backbone for All-Solid-State Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 24791-24798.
[21] Fan, L.; Li, Y.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. PEO/Garnet Composite Electrolytes for Solid-State Lithium Batteries: From “Ceramic-in-Polymer”to“Polymer-in-Ceramic”. Nano Energy 2018, 46, 176-184.
[22] Yu, X.; Manthiram, A. A Long Cycle Life, All-Solid-State Lithium Battery with a Ceramic−Polymer Composite Electrolyte. ACS Appl. Energy Mater. 2020, 3, 2916-2924.
[23] Karthik, K.; Murugan, R. Lithium Garnet Based Free-Standing Solid Polymer Composite Membrane for Rechargeable Lithium Battery. J. Solid State Electrochem. 2018, 22, 2989-2998.
[24] Kuhnert, E.; Ladenstein, L.; Jodlbauer, A.; Slugovc, C.; Trimmel, G.; Wilkening, H. M. R.; Rettenwander, D. Lowering the Interfacial Resistance in Li6.4La3Zr1.4Ta0.6O12 Poly(ethylene oxide) Composite Electrolytes. Cell Rep. Phys. Sci. 2020, 1, 100214.
[25] Zhang, Z.; Huang, Y.; Gao, H.; Huang, J.; Li, C.; Liu, P. An All-Solid-State Lithium Battery Using the Li7La3Zr2O12 and Li6.7La3Zr1.7Ta0.3O12 Ceramic Enhanced Polyethylene Oxide Electrolytes with Superior Electrochemical Performance. Ceram. Int. 2020, 46, 11397-11405.
[26] Al-Salih, H.; Huang, A.; Yim, C.-H.; Freytag, A. I.; Goward, G. R.; Baranova, E.; Abu-Lebdeh, Y. A Polymer-Rich Quaternary Composite Solid Electrolyte for Lithium Batteries. J. Electrochem. Soc. 2020, 167, 070557.
[27] Lei, J.; Chen, J.; Naveed, A.; Zhang, H.; Yang, J.; Nuli, Y.; Wang, J. Sulfurized Polyacrylonitrile Cathode Derived from Intermolecular Cross-Linked Polyacrylonitrile for a Rechargeable Lithium Battery. ACS Appl. Energy Mater. 2021, 4.
[28] Zheng, Y.; Yao, Y.; Ou, J.; Li, M.; Luo, D.; Dou, H.; Li, Z.; Amine, K.; Yu, A.; Chen, Z. A Review of Composite Solid-State Electrolytes for Lithium Batteries: Fundamentals, Key Materials and Advanced Structures. Chem. Soc. Rev. 2020, 49, 8790-8839.
[29] Zhang, X.; Liu, T.; Zhang, S.; Huang, X.; Xu, B.; Lin, Y.; Xu, B.; Li, L.; Nan, C. W.; Shen, Y. Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. J. Am. Chem. Soc. 2017, 139, 13779-13785.
[30] Zhang, D.; Xu, X.; Ji, S.; Wang, Z.; Liu, Z.; Shen, J.; Hu, R.; Liu, J.; Zhu, M. Solvent-Free Method Prepared a Sandwich-like Nanofibrous Membrane-Reinforced Polymer Electrolyte for High-Performance All-Solid-State Lithium Batteries. ACS Appl. Energy Mater. 2020, 13, 21586-21595.
[31] Liang, J.; Luo, J.; Sun, Q.; Yang, X.; Li, R.; Sun, X. Recent Progress on Solid-State Hybrid Electrolytes for Solid-State Lithium Batteries. Energy Storage Mater. 2019, 21, 308-334.
[32] Gunnarsdóttir, A. B.; Amanchukwu, C. V.; Menkin, S.; Grey, C. P. Noninvasive In Situ NMR Study of “Dead Lithium” Formation and Lithium Corrosion in Full-Cell Lithium Metal Batteries. J. Am. Chem. Soc. 2020, 142, 20814-20827.
[33] Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K. H.; Zhang, J. G.; Thornton, K.; Dasgupta, N. P. Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy. ACS Cent. Sci. 2016, 2, 790-801.
[34] Liu, Y.; Gao, D.; Xiang, H.; Feng, X.; Yu, Y. Research Progress on Copper-Based Current Collector for Lithium Metal Batteries. Energy & fuels 2021, 32, 12921-12937.
[35] Jiao, X.; Wang, J.; Gao, G.; Zhang, X.; Fu, C.; Wang, L.; Wang, Y.; Liu, T. Stable Li–Metal Batteries Enabled by in Situ Gelation of an Electrolyte and In-Built Fluorinated Solid Electrolyte Interface. ACS Appl. Mater. Interfaces 2021, 13, 60054-60062.
[36] Xiong, X.; Zhou, Q.; Zhu, Y.; Chen, Y.; Fu, L.; Liu, L.; Yu, N.; Wu, Y.; Ree, T. V. In Pursuit of a Dendrite-Free Electrolyte/Electrode Interface on Lithium Metal Anodes: A Minireview. Energy Fuels 2020, 34, 9, 10503-10512.
[37] Shi, S.; Lu, P.; Liu, Z.; Qi, Y.; Jr, L. G. H.; Li, H.; Harris, S. J. Direct Calculation of Li-Ion Transport in the Solid Electrolyte Interphase. J. Am. Chem. Soc. 2012, 134, 15476-15487.
[38] Teran, A. A.; Tang, M. H.; Mullin, S. A.; Balsara, N. P. Effect of Molecular Weight on Conductivity of Polymer Electrolytes. Solid State Ionics 2011, 203, 18-21.
[39] Zhang, J.; Zhao, J.; Yue, L.; Wang, Q.; Chai, J.; Liu, Z.; Zhou, X.; Li, H.; Guo, Y.; Cui, G.; Chen, L. Safety-Reinforced Poly(Propylene Carbonate)-Based All-Solid-State Polymer Electrolyte for Ambient-Temperature Solid Polymer Lithium Batteries. Adv. Energy Mater. 2015, 5, 1501082.
[40] Zhang, J.; Zang, X.; Wen, H.; Dong, T.; Chai, J.; Li, Y.; Chen, B.; Zhao, J.; Dong, S.; Ma, J.; Yue, L.; Liu, Z.; Guo, X.; Cui, G.; Chen, L. High-Voltage and Free-Standing Poly(propylene-carbonate)/Li6.75La3Zr1.75Ta0.25O12 Composite Solid Electrolyte for Wide Temperature Range and Flexible Solid Lithium Ion Battery. J. Mater. Chem. A 2017, 5, 4940-4948.
[41] Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Adv. Funct. Mater. 2017, 27, 1605989.
[42] Thenuwara, A. C.; Shetty, P. P.; Kondekar, N.; Sandoval, S. E.; Cavallaro, K.; May, R.; Yang, C. T.; Marbella, L. E.; Qi, Y.; McDowell, M. T. Efficient Low-Temperature Cycling of Lithium Metal Anodes by Tailoring the Solid-Electrolyte Interphase. ACS Energy Lett. 2020, 5, 2411-2420.
[43] Zhang, S.; Ma, J.; Hu, Z.; Cui, G.; Chen, L. Identifying and Addressing Critical Challenges of High-Voltage Layered Ternary Oxide Cathode Materials. Chem. Mater. 2019, 31, 6033-6065.
[44] Chen, X. R.; Yao, Y. X.; Yan, C.; Zhang, R.; Cheng, X. B.; Zhang, Q. A Diffusion--Reaction Competition Mechanism to Tailor Lithium Deposition for Lithium-Metal Batteries. Angew. Chem. Int. Ed. 2020, 59, 7743-7747.
[45] Biswal, P.; Stalin, S.; Kludze, A.; Choudhury, S.; Archer, L. A. Nucleation and Early Stage Growth of Li Electrodeposits. Nano Lett. 2019, 19, 8191-8200.
[46] Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H. Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chem. Rev. 2020, 120, 6820-6877.
[47] Yuan, H.; Luan, J.; Yang, Z.; Zhang, J.; Wu, Y.; Lu, Z.; Liu, H. Single Lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2020, 12, 7249-7256.
[48] Li, Z.; Liu, P.; Zhu, K.; Zhang, Z.; Si, Y.; Wang, Y.; Jiao, L. Solid-State Electrolytes for Sodium Metal Batteries. Energy Fuels 2021, 35, 9063-9079.
[49] Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.; Mo, Y.; Ceder, G. Design Principles for Solid-State Lithium Superionic Conductors. Nat. Mater. 2015, 14, 1026-1031.
[50] Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-Power All-Solid-State Batteries Using Sulfide Superionic Conductors. Nat. Energy 2016, 1, 16030.
[51] Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. New, Highly Ion-Conductive Crystals Precipitated from Li2S-P2S5 Glasses. Adv. Mater. 2005, 17, 918-921.
[52] Han, Q.; Li, X.; Shi, X.; Zhang, H.; Song, D.; Ding, F.; Zhang, L. Outstanding Cycle Stability and Rate Capabilities of the All-Solid-State Li-S Battery with a Li7P3S11 Glass-Ceramic Electrolyte and a Core-Shell S@BP2000 Nanocomposite. J. Mater. Chem. A 2019, 7, 3895-3902.
[53] Thangadurai, V.; Narayanana, S.; Pinzaru, D. Garnet-Type Solid-State Fast Li Ion Conductors for Li Batteries: Critical Review. Chem. Soc. Rev. 2014, 43, 4714-4727.
[54] O’Callaghan, M. P.; Powell, A, S.; Titman, J. J.; Chen, G. Z.; Cussen, E. J. Switching on Fast Lithium Ion Conductivity in Garnets: The Structure and Transport Properties of Li3+xNd3Te2-xSbxO12. Chem. Mater. 2008, 20, 2360-2369.
[55] Rosero-Navarro, N. C.; Kajiura, R.; Miura, A.; Tadanaga, K. Organic–Inorganic Hybrid Materials for Interface Design in All-Solid-State Batteries with a Garnet-Type Solid Electrolyte. ACS Appl. Energy Mater. 2020, 3, 11260-11268.
[56] Ramzy, A.; Thangadurai, V. Tailor-Made Development of Fast Li Ion Conducting Garnet-Like Solid Electrolytes. ACS Appl. Mater. Interfaces 2010, 2, 385-390.
[57] Yu, S.; Schmidt, R. D.; Garcia-Mendez, R.; Herbert, E.; Dudney, N. C.; Wolfenstine, J. B.; Sakamoto, J.; SiegelElastic, D. J. Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 2016, 28, 1, 197-206.
[58] Allen, J.L.; Wolfenstine, J.; Rangasamy, E.; Sakamoto, J. Effect of Substitution (Ta, Al, Ga) on the Conductivity of Li7La3Zr2O12. J. Power Sources 2012, 206, 315-319.
[59] Ngai, K. S.; Ramesh, S.; Ramesh, K.; Juan, J. C. A Review of Polymer Electrolytes: Fundamental, Approaches and Applications. Ionics 2016, 22, 1259-1279.
[60] Liu, L.; Qi, X.; Yin, S.; Zhang, Q.; Liu, X.; Suo, L.; Li, H.; Chen, L.; Hu, Y. S. In Situ Formation of a Stable Interface in Solid-State Batteries. ACS Energy Lett. 2019, 4, 1650-1657.
[61] Sha, Y.; Dong, T.; Zhao, Q.; Zheng, H.; Wen, X.; Chen, S.; Zhang, S. A New Strategy for Enhancing the Room Temperature Conductivity of Solid-State Electrolyte by Using a Polymeric Ionic Liquid. Ionics 2020, 26, 4803-4812.
[62] Yang, X.; Jiang, M.; Gao, X.; Bao, D.; Sun, Q.; Holmes, N.; Duan, H.; Mukherjee, S.; Adair, K.; Zhao, C.; Liang, J.; Li, W.; Li, J.; Liu, Y.; Huang, H.; Zhang, L.; Lu, S.; Lu, Q.; Li, R.; Singh, C. V.; Sun, X. Determining the Limiting Factor of the Electrochemical Stability Window for PEO-Based Solid Polymer Electrolytes: Main Chain or Terminal -OH Group?. Energy Environ. Sci. 2020, 13, 1318-1325.
[63] Song, S.; Dong, Z.; Fernandez, C.; Wen, Z.; Hu, N.; Lu, L. Nanoporous Ceramic-Poly(ethylene oxide) Composite Electrolyte for Sodium Metal Battery. Mater. Lett. 2019, 236, 13-15.
[64] Zheng, Y.; Pan, Q.; Clites, M.; Byles, B. W.; Pomerantseva, E.; Li, C, Y. High-Capacity All-Solid-State Sodium Metal Battery with Hybrid Polymer Electrolytes. Adv. Energy Mater. 2018, 8, 1801885.
[65] Zhang, X.; Wang, X.; Liu, S.; Tao, Z.; Chen, J. A Novel PMA/PEG-Based Composite Polymer Electrolyte for All-Solid-State Sodium Ion Batteries. Nano Res. 2018, 11, 6244-6251.
[66] Rojaee, R.; Cavallo, S.; Mogurampelly, S.; Wheatle, B. K.; Yurkiv, V.; Deivanayagam, R.; Foroozan, T.; Rasul, M. G.; Sharifi-Asl, S.; Phakatkar, A. H.; Cheng, M.; Son, S. B.; Pan, Y.; Mashayek, F.; Ganesan, V.; Shahbazian-Yassar, R. Highly-Cyclable Room-Temperature Phosphorene Polymer Electrolyte Composites for Li Metal Batteries. Adv. Funct. Mater. 2020, 30, 1910749.
[67] Saikia, D.; Chen-yang, Y. W.; Chen, Y. T.; Li, Y. K.; Lin, S. I. Investigation of Ionic Conductivity of Composite Gel Polymer Electrolyte Membranes Based on P(VDF-HFP), LiClO4 and Silica Aerogel for Lithium Ion Battery. Desalination 2008, 234, 24-32.
[68] Abbrent, S.; Plestil, J.; Hlavata, D.; Lindgren, J.; Tegenfeldt, J.; Wendsjö, Å. Crystallinity and Morphology of PVdF–HFP-Based Gel Electrolytes. Polymer 2001, 42, 1407-1416.
[69] Wu, C. G.; Lu, M. I.; Tsai, C. C.; Chuang, H. J. PVdF-HFP/metal oxide nanocomposites: The Matrices for High-Conducting, Low-Leakage Porous Polymer Electrolytes. J. Power Sources 2006, 159, 295-300.
[70] Manthiram, A.; Yu, X.; Wang, S. Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nat. Rev. Mater. 2017, 2, 16103.
[71] Li, Z.; Liu, P.; Zhu, K.; Zhang, Z.; Si, Y.; Wang, Y.; Jiao, L. Solid-State Electrolytes for Sodium Metal Batteries. Energy Fuels 2021, 35, 9063-9079.
[72] Song, Y. X.; Shi, Y.; Wan, J.; Lang, S. Y.; Hu, X. C.; Yan, H. J.; Liu, B.; Guo, Y. G.; Wen, R.; Wan, L. J. Direct Tracking of the Polysulfide Shuttling and Interfacial Evolution in All-Solid-State Lithium–Sulfur Batteries: A Degradation Mechanism Study. Energy Environ. Sci. 2019, 12, 2496.
[73] Judez, X.; Zhang, H.; Li, C.; González-Marcos, J. A.; Zhou, Z.; Armand, M.; Rodriguez-Martinez, L. M. Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li–S Cell. J. Phys. Chem. Lett. 2017, 8, 1956-1960.
[74] Eshetu, G. G.; Judez, X.; Li, C.; Martinez-Ibañez, M.; Gracia, I.; Bondarchuk, O.; Carrasco, J.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M. Ultrahigh Performance All Solid-State Lithium Sulfur Batteries: Salt Anion’s Chemistry-Induced Anomalous Synergistic Effect. J. Am. Chem. Soc. 2018, 140, 9921-9933.
[75] Fang, R.; Xu, B.; Grundish, N. S.; Xia, Y.; Li, Y.; Lu, C.; Liu, Y.; Wu, N.; Goodenough, J. B. Li2S6-Integrated PEO-Based Polymer Electrolytes for All-Solid-State Lithium-Metal Batteries. Angew. Chem. Int. Ed. 2021, 60, 17701-17706.
[76] Liu, Y. C.; Tsai, D. S.; Ho, C. C.; Jheng, Y. T.; Pham, Q. T.; Chern, C. S.; Wang, M. J. Solid-State Lithium Metal Battery of Low Capacity Fade Enabled by a Composite Electrolyte with Sulfur-Containing Oligomers. ACS Appl. Mater. Interfaces 2022, 14, 16136-16146.
[77] Porcarelli, L.; Shaplov, A. S.; Bella, F.; Nair, J. R.; Mecerreyes, D.; Gerbaldi, C. Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries that Operate at Ambient Temperature. ACS Energy Lett. 2016, 1, 678-682.
[78] Nguyen, H. D.; Kim, G. T.; Shi, J.; Paillard, E.; Judeinstein, P.; Lyonnard, S.; Bresser, D.; Iojoiu, C. Nanostructured Multi-Block Copolymer Single-Ion Conductors for Safer High Performance Lithium Batteries. Energy Environ. Sci. 2018, 11, 3298-3309.
[79] Ahmed, F.; Choi, I.; Rahman, M. M.; Jang, H.; Ryu, T.; Yoon, S.; Jin, L.; Jin, Y.; Kim, W. Remarkable Conductivity of a Self-Healing Single-Ion Conducting Polymer Electrolyte, Poly(ethylene-co-acrylic Lithium (Fluorosulfonyl)imide) for All-Solid-State Li-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 34930-34938.
[80] Yu, Z.; Mackanic, D. G.; Michaels, W.; Lee, M.; Pei, A.; Feng, D.; Zhang, Q.; Tsao, Y.; Amanchukwu, C. V.; Yan, X.; Wang, H.; Chen, S.; Liu, K.; Kang, J.; Qin, J.; Cui, Y.; Bao, Z. A Dynamic, Electrolyte-Blocking, and Single-Ion-Conductive Network for Stable Lithium-Metal Anodes. Joule 2019, 3, 2761-2776.
[81] Wang, X.; Liu, Z.; Kong, Q.; Jiang, W.; Yao, J.; Zhang, C.; Cui, G. A Single-Ion Gel Polymer Electrolyte Based on Polymeric Lithium Tartaric Acid Borate and Its Superior Battery Performance. Solid State Ionics 2014, 262, 747-753.
[82] Shim, J.; Lee, J. S.; Lee, J. H.; Kim, H. J.; Lee, J. C. Gel Polymer Electrolytes Containing Anion-Trapping Boron Moieties for Lithium-Ion Battery Applications. ACS Appl. Mater. Interfaces 2016, 8, 27740-27752.
[83] Deng, K.; Wang, S.; Ren, S.; Han, D.; Xiao, M.; Meng, Y. A Novel Single-Ion-Conducting Polymer Electrolyte Derived from CO2-Based Multifunctional Polycarbonate. ACS Appl. Mater. Interfaces 2016, 8, 33642-33648.
[84] Zhang, H.; Li, C.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L. M.; Armand, M.; Zhou, Z. Single Lithium-Ion Conducting Solid Polymer Electrolytes: Advances and Perspectives. Chem. Soc. Rev. 2017, 46, 797-815.
[85] Guo, M.; Zhang, M.; He, D.; Hu, J.; Wang, X.; Gong, C.; Xie, X.; Xue, Z. Comb-Like Solid Polymer Electrolyte Based on Polyethylene Glycol-Grafted Sulfonated Polyether Ether Ketone. Electrochim. Acta 2017, 255, 396-404.
[86] Winter, M.; Barnett, B.; Xu, K. Before Li Ion Batteries. Chem. Rev. 2018, 118, 11433-11456.
[87] Chen, J.; Deng, W.; Gao, X.; Yin, S.; Yang, L.; Liu, H.; Zou, G.; Hou, H.; Ji, X. Demystifying the Lattice Oxygen Redox in Layered Oxide Cathode Materials of Lithium-Ion Batteries. ACS Nano 2021, 15, 6061-6104.
[88] Jena, K. K.; AlFantazi, A.; Mayyas, A. T. Comprehensive Review on Concept and Recycling Evolution of Lithium-Ion Batteries (LIBs). Energy Fuels 2021, 35, 18257-18284.
[89] Yu, L.; Liu, T.; Amine, R.; Wen, J.; Lu, J.; Amine, K. High Nickel and No Cobalt-The Pursuit of Next-Generation Layered Oxide Cathodes. ACS Appl. Mater. Interfaces 2022.
[90] Ling, J.; Karuppiah, C.; Krishnan, S. G.; Reddy, M. V.; Misnon, I. I.; Rahim, M. H. A.; Yang, C. C.; Jose, R. Phosphate Polyanion Materials as High-Voltage Lithium-Ion Battery Cathode: A Review. Energy Fuels 2021, 35, 10428-10450.
[91] Chen, S. P.; Lv, D.; Chen, J.; Zhang, Y. H.; Shi, F. N. Review on Defects and Modification Methods of LiFePO4 Cathode Material for Lithium-Ion Batteries. Energy Fuels 2022, 36, 1232-1251.
[92] Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B. S.; Weiss, P. S.; Penner, R. M.; Mullins, B. Electrode Degradation in Lithium-Ion Batteries. ACS Nano 2020, 14, 2, 1243-1295.
[93] Chen, L.; Zhang, H. W.; Liang, L. Y.; Liu, Z.; Qi, Y.; Lu, P.; Chen, J.; Chen, L. Q. Modulation of Dendritic Patterns during Electrodeposition: A Nonlinear Phase-Field Model. J. Power Sources 2015, 300, 376-385.
[94] Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117, 10403-10473.
[95] Meyerson, M. L.; Papa, P. E.; Heller, A.; Mullins, C. B. Recent Developments in Dendrite-Free Lithium-Metal Deposition through Tailoring of Micro- and Nanoscale Artificial Coatings. ACS Nano 2021, 15, 29-46.
[96] Xu, W.; Wamg, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. G. Lithium Metal Anodes for Rechargeable Batteries. Energy Environ. Sci. 2014, 7, 513-537.
[97] Mayers, M. Z.; Kaminski, J. W.; Miller, T. F. Suppression of Dendrite Formation via Pulse Charging in Rechargeable Lithium Metal Batteries. J. Phys. Chem. C 2012, 116, 26214-26221.
[98] Jana, A.; Woo, S. I.; Vikrant, K. S. N.; Garcia, R. E. Electrochemomechanics of Lithium Dendrite Growth. Energy Environ. Sci. 2019, 12, 3595.

QR CODE