簡易檢索 / 詳目顯示

研究生: 蔡宗霖
Tsung-lin Tsai
論文名稱: 以Ⅱ-Ⅵ族量子點修飾氧化鋅奈米柱之光電性質分析
Optical Properties Study of Adsorption of Ⅱ-Ⅵ Nanocrystallines on ZnO Nanorods Surfaces
指導教授: 陳良益
Liang-Yih Chen
口試委員: 劉進興
none
吳季珍
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 101
中文關鍵詞: 氧化鋅水熱法奈米柱
外文關鍵詞: ZnO, hydrothermal, nanorod
相關次數: 點閱:306下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是以水熱法以醋酸鋅與六甲基四胺為反應物,溫度為90oC下,成長高順向性氧化鋅奈米柱於氧化銦錫透明導電玻璃基板上。在型態上,以掃描式電子顯微鏡進行分析;在光學性質上,使用紫外光/可見光吸收光譜儀與螢光光譜儀進行分析,以探討反應條件對氧化鋅奈米柱在形態與光學特性的影響。在進行高深寬氧化鋅奈米柱的成長上,於反應溶液中加入聚乙烯亞胺,以多次成長進行。在量子點披覆於氧化鋅奈米柱表面的實驗方面,為了有效披覆量子點,先利用3-巰基丙酸或11-巰基十一酸進行氧化鋅奈米柱表面改質,使具有雙官能基的表面活性劑羧基接上氧化鋅表面,再利用另一端的硫醇鍵鍵結於量子點的表面。此結果對於日後研發量子點敏化太陽能電池有著很高的應用價值。


In this study, hydrothermal method was employed to grow well-aligned ZnO nanorods on ITO/glass substrate using zinc acetate dehydrate and methenamine as reactants. Field-emission scanning electron microscope (FE-SEM) was used to observe the morphologies of ZnO nanorods and UV-visible and photoluminescence spectroscopy were used to take the optical properties in different growth conditions. Multiple growth stages were employed to grow high aspect ratio ZnO nanorods by adding some polyethyleneimine (PEI). In order to attach quantum dots on the surface of ZnO nanorods, 3-mercaptopropionic acid or 11-mercaptoundecanoic acid with carboxyl and thiol functional groups were used to modify the surface of ZnO nanorods. The carboxyl group can anchor on the surface of ZnO nanorods and thiol group can catch quantum dots. This technique is very useful to develop quantum dots sensitized nanorods solar cells in the future.

中文摘要I AbstractII 誌謝III 目錄IV 表目錄VIII 圖目錄IX 第一章緒論1 第二章理論基礎與文獻回顧4 2-1 氧化鋅的基本性質與應用4 2-2 氧化鋅光學能隙的計算8 2-3 氧化鋅的發光機制9 2-4 以水熱法成長氧化鋅奈米柱之成長機制12 2-5 準直型氧化鋅奈米柱之成長13 2-6 成長氧化鋅奈米線的方法15 2-6-1 高溫爐化學氣相沉積法15 2-6-2 水熱法16 2-6-3電泳模板法17 2-7 一維氧化鋅奈米材料在太陽能電池上的應用20 第三章 實驗方法與步驟23 3-1 實驗流程圖23 3-2 實驗藥品與設備儀器24 3-2-1 藥品/耗材名稱24 3-2-2 實驗設備27 3-2-3 分析儀器27 3-3 實驗步驟33 3-3-1 基板清洗33 3-3-2 氧化鋅膠體溶液之配製34 3-3-3 晶種層之製備34 3-3-4 成長氧化鋅奈米柱34 3-3-5量子點之製備方式34 3-3-6 以量子點修飾氧化鋅奈米柱36 第四章 結果與討論37 4-1 氧化鋅晶種層的製備與分析37 4-1-1 表面改質對基板親水性的影響37 4-1-2 退火處理(post annealing)對氧化鋅晶種層的影響38 4-2 醋酸鋅與六甲基四胺的濃度對成長氧化鋅奈米柱的影響44 4-2-1 氧化鋅奈米結構的表面分析44 4-2-2 X-Ray繞射圖譜分析49 4-2-3 光學性質的量測51 4-3 硝酸鋅與六甲基四胺的濃度對成長氧化鋅奈米柱的影響56 4-3-1 氧化鋅奈米結構的表面分析56 4-3-2 X-Ray繞射圖譜分析60 4-3-3 光學性質的量測62 4-4 硝酸鋅與不同鹼基對成長氧化鋅奈米柱的影響67 4-4-1 氧化鋅奈米結構的表面分析67 4-4-2 X-Ray繞射圖譜分析70 4-4-3 光學性質的量測72 4-5 成長高深寬比氧化鋅奈米線77 4-6 以電泳法製備氧化鋅晶種層的表面分析81 4-7 成長氧化鋅奈米管83 4-8 以量子點修飾氧化鋅奈米柱的結果與分析86 4-8-1 探討不同ligand對量子點披覆氧化鋅奈米柱的影響86 4-8-2 探討浸泡量子點的時間長短對氧化鋅奈米柱披覆量 子點的影響88 4-8-3 溫度對於吸附量子點的影響91 4-8-4 穿透式電子顯微鏡分析量子點的吸附93 第五章 結論98 第六章 參考文獻99

[1] L. H. Sung, K. B. Sung, K. H. Mi, W. J. Sub, N. S. Wook, J. K. Bae, A. Yoshihiro, K. K. Bum, Adv. Mater. 19, 4189, (2007).
[2] C. McAlpine, S. Friedman, M. Lieber, Nano Lett. 3, 4, (2003).
[3] K. Yim and C. Lee, Cryst. Res. Technol. 41, 1198, (2006)
[4] M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis and G. Kiriakidis, Science Direct, 515, 551, (2006)
[5] Q. Wang, Q. H. Li, Y. J.Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, Appl. Phys. Lett. 84, 3654, (2004).
[6] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science, 292, 1897, (2001).
[7] J. Goldberger, D. J. Sirbuly, M. Law and P. D. Yang, J. Phys. Chem. B, 109, 9, (2005).
[8] H. Kind, H. Q. Yan, B. Messer, M. Law and P. D. Yang, Adv. Mater. 14, 158, (2002).
[9] G. Elena and R. Jonathan, J. Phys. Chem. B, 110, 16159, (2006).
[10] H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, S. E. Lindquist, L. N. Wang and M. Muhammed, J. Phys. Chem. B, 101, 2598, (1997).
[11] R. Ro, S. Y. Chang, R.C. Hwang and D. H. Lee, Proc, Natl. Sci. Counc. 23, 810, (1999).
[12] X. Wang, J. Zhang and Z. Zhu, Applied Surface Science, 252, 2404, (2006).
[13] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, and J. A. Voigt, J. Appl. Phys. 79, 10, (1996).
[14] L. Vayssieres, Adv. Mater. 15, 464, (2003).
[15] Meyer, B, Marx, Dominik, Physical Review B, 67, 3, (2003).
[16] L. N. Dem’yanets, D. V. Kostomarov, and I. P. Kuz’mina, Inorganic Materials, 38, 2, (2002).
[17] Y. C. Wang, I. C. Leu and M. H. Hon, J. Mater. Chem. 12, 2439, (2002).
[18] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, L. P. Zhu and B. H. Zhao, Applied Surface Science, 250, 280, (2005).
[19] A. Zeuner, H. Alves, D.M. Hofmenn, and B.K. Meyer, Appl. Phys. Lett. 80, 2078, (2002).
[20] C. Y. Lee, T. Y. Tseng, S. Y. Li and P. Lin, Tamkang Journal of Science and Engineering, 6, 127, (2003).
[21] L. Vayssieres, K. Keis, A. Hagfeldt and S. Lindquist, Chem. Mater., 13, 4395, (2001).
[22] S.T. Tan, B.J. Chen, X.W. Sun, M.B. Yu, X.H. Zhang and S.J. Chua, Journal of Electronic Materials, 34, 1172, (2005).
[23] L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R. J. Saykally, and P.D. Yang , Angew. Chem. Int. Ed. 42, 26, (2003).
[24] http://www.lac.tu-clausthal.de/forschung/zinc-oxide-nanowires/
[25] M. Law, L. Greene, J. C. Johnson, R. Sayally and P.D. Yang, Nature Material, 4, 455, (2005).
[26] K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter,U. R. Kortshagen, D. J. Norris, and E. S. Aydil, Nano Lett. 7, 6, (2007).
[27] D. W. Bahnemann, C. Kormann and M. R. Hoffmann, J. Phys. Chem. 91,3789, (1987).
[28] E. M. Wong, J. E. Bonevich, and P. C. Searson, J. Phys. Chem. B, 102, 7770, (1998).
[29] E. M. Wong, P. G. Hoertz, C. J. Liang, B. M. Shi, G. J. Meyer, P. C. Searson, Langmuir, 17, 8362, (2001).
[30] L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun and P.D. Yang, Inorganic Chemistry, 45, 7535, (2006)
[31] K. Govender, D. S. Boyle, P. B. Kenway, P. O’Brien, J. Mater. Chem. 14, 2575, (2004).
[32] J. H. Kim, D. Andeen, F. F. Lange, Adv. Mater. 18, 2453, (2006).
[33] A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, Y. Yang, S. T. Tan, W. Huang, Nanotechnology, 17, 1740, (2006).
[34] S. F. Wuister, C. M. Donegá and A. Meijerink, J. Phys. Chem. B, 108, 17393, (2004).
[35] I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, J. Am. Chem. Soc. 128, 2385, (2006).
[36] S. Yin and T. Sato, J. Mater. Chem. 15, 4584, (2005)
[37] B. Cao and W. Cai, J. Phys. Chem. C, 112, 680, (2008)

QR CODE