簡易檢索 / 詳目顯示

研究生: 廖憲良
Xian-liang Liao
論文名稱: 表面電漿共振技術之光調製系統
The spectrum modulation system based on Surface Plasmon Resonance
指導教授: 林保宏
Pao-Hung Lin
口試委員: 黃忠偉
Jong-Woei Whang
王秀仁
Show-Ran Wang
張勝良
Sheng-Lyang Jang
邱炳樟
Bing-zhang Qiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 48
中文關鍵詞: 表面電漿共振光調製
外文關鍵詞: spectrum modulation system
相關次數: 點閱:236下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

表面電漿共振被廣泛地應用在生物分子的檢測上,也應用在其它領域。然而現今各地廣泛推廣節能意識,因此本文提出新的表面電漿共振技術應用,藉由表面電漿共振結合光電材料,架設新的系統,達成光譜調製效果,希望未來能加以改良,應用在室外引光進室內,藉由調整入射光譜以符合人的需求(藍光會使人清醒,黃光使人安逸),又能響應節能省電。

本研究著重於樣本的製程和光路系統設計及架設,先從理論與樣本的製程開始探討,最後使用本實驗所設計的系統量測出表面電漿共振曲線。


The SPR is widely applied in biosensors and many other fields. The energy conservation consciousness is widespread promotion all over the world. Therefore, this article proposed the new SPR technology's application by the photoelectric material. We set up the new system to achieve the spectrum modulation effect. In the future, it can be further improvement. The application is to transmit sunlight to indoor by the suitable adjustment incident light spectrum to satisfy humans’ the demand.It can also save energy.

In this research, we focus on set up the system, designed the path of ray, and fabricated the sample. In the beginning, we discussed the theory of SPR and the process of fabricated sample. Finally we used this system to measure the SPR curve.

目錄 摘要I 誌謝III 目錄IV 圖列V 第一章緒論1 1.1 前言1 1.2 研究動機與目的1 1.3 文獻回顧2 第二章理論探討3 2.1 表面電漿子3 2.2 表面電漿子之激發10 2.2.1 表面電漿子激發之衰減式全反射耦合機制11 2.2.1.1 Otto組態11 2.2.1.2 Kretschmann組態12 2.3 薄膜沉積14 2.3.1 熱蒸鍍法 14 2.3.2 離子濺鍍法17 第三章實驗之樣本製作19 3.1 試片之清洗19 3.2 電子束蒸鍍機操作22 第四章實驗設計及系統架設26 4.1實驗設計概念26 4.2光導材料特性27 4.3實驗系統架設29 4.3.1 實驗系統之光路架構30 4.3.2 實驗系統架設曾面臨的問題及解決方案30 4.4實驗步驟34 第五章實驗結果及數據分析36 第六章結論42 參考資料43 附錄1.145 附錄1.247 附錄1.348

[1]R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum", Phil. Magm., 396-402(1902).
[2]J. Tominoga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fuckuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fuckaya, and N. Atoda, "Super-resolution near-field structure and signal enhancement by surface plasmons", Jpn. J. Appl. Phys. 40, 1831,2001.
[3]W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, " Near-field images of the AgOx-type super-resolution near-field structure", Appl. Phys. Lett. 78, 685, 2001.
[4]Y. K. Kim, P. M. Lundquist, J. A. Helfrich, J. M. Mikrut, G. K. Wong, P. R. Auvil, and J. B. Ketterson, "Scanning Plasmon optical microscope", Appl. Phys. Lett. 66, 3407, 1995.
[5]I. Pockrand, J. D. Swalen, R. Santo, A. Brillante, and M. R. Philpott, "Optical properties of organic dye monolayers by surface Plasmon spectroscopy", J. Chem. Phys. 69, 4001, 1978.
[6]W. P. Chen, and J. M. Chen, "Use of Surface Plasma Waves for Determination of the Thickness and Optical Constants of Thin Metallic Films", J. Opt. Soc. Am. 71, 189, 1981.
[7]W. A. Challener, R. R. Ollman, and K. K. Kam, "A surface Plasmon resonance gas sensor in a ‘compact disc’ format", Sens. & Actuators 56, 254, 1999.
[8]M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, D. Meissner, "Metal cluster enhanced organic solar cells", Solar Energy Materials and Solar Cells 61, 97, 2000.
[9]N. E. Hecker, R. A. Hopfel, and N. Sawaki, "Enhanced ligh emission from a single quantum well located near a metal coated surface", Physica E, 2, 98, 1998.
[10]N. E. Hecker, R. A. Hopfel, N. Sawaki, T. Maier, and G. Strasser, "Surface plasmon-enhanced photoluminescence from a single quantum well", Appl. Phys. Lett. 75, 1577, 1999.
[11]R.H. Ritchie, "Plasma losses by fast electrons in thin films", Phys. Rev., 106, 874-881 (1957).
[12]C.J. Powell and J.B. Swan, "Effect of oxidation on the characteristics loss sepectra of aluminum and magnesium", Phys Rev., 118, 640-643 (1960).
[13]U, Fano, "Effects of configuration interaction on intensities and phase shifts", Phys. Rev., 124,1866-1878(1961).
[14]A. Otto, "Excitation of surface plasma waves in silver by the method of frustrated total reflection", Z. Physik 216, 398-410(1968).
[15]E. Kretschmann, H. Raether, "Radiative decay of non-radiative surface plasmons excited by light", Z. Naturforsch., 23A, 2135-2136 (1968).
[16]X. Yu, D. Wang, D. Wang, Y. J. H. Ou, Z. Yan, Y. Zibo, Y. Dong, W. Liao, and X.S. Zhao, "Micro-array detection system for gene expression products based on surface plasmon resonance imaging", Sensors and Actuators B 91, 133-137 (2003).
[17]P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrucke, "Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy", Sensors and Actuators B 54,166-175 (1999).
[18]W. B. Lin, J. M. Chovelon, and N. J. Renault, "Fiber-optic surface-plasmon resonance for the determination of thickness and optical constants of thin metal films", Appl. Opt. 39, 3261-3265 (2000).
[19]吳民耀,劉威志,「表面電漿子理論與模擬」,物理雙月刊,第二十八卷,第二期,2006。
[20]邱國斌,蔡定平,「金屬表面電漿簡介」,物理雙月刊,第二十八卷二期,2006。
[21]張勁燕,半導體製程設備,五南圖書公司,2005年9月。
[22]莊達人,VLSI製造技術,高立圖書公司,第五版,2002。
[23]施敏原著;黃調元譯,半導體元件物理與製作技術,高立圖書公司,2002。

無法下載圖示 全文公開日期 2014/07/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE