簡易檢索 / 詳目顯示

研究生: 高再鴻
Tsai-Hung Kao
論文名稱: 以密度泛函理論探討碳酸二甲酯於二氧化鈰(100)表面之分解反應機構
Insights of the Mechanisms of Dimethyl Carbonate Decomposition Reactions on the CeO2 (100) Surface - A DFT study
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 游文岳
Wen-Yueh Yu
林昇佃
Shawn D. Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 94
中文關鍵詞: 二氧化鈰碳酸二甲酯微觀反應動力學催化反應密度泛函理論
外文關鍵詞: cerium oxide, dimethyl carbonate, microkinetic, catalytic reaction, DFT
相關次數: 點閱:349下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於碳酸二甲酯(DMC)含有甲氧基(CH3O)、甲基(CH3)、羰基(C=O)等官能基,且具有低毒性、可生物降解的特性,因此常被視為環境友善試劑並應用於各種反應當中。此外,近年來二氧化鈰(CeO2)催化劑廣泛地被應用在各種催化領域之中,科學家們發現其不同切面或者不同表面型態會具有不同的反應選擇性。在本研究中,我們藉由密度泛函理論(DFT)計算來探討DMC在CeO2(100)表面上的分解機制。結果顯示,表面上會產生OCH3、CO3、CO2等物種,而CH3OH及CO則會在後續的OCH3氫化及脫氫反應中產生,最終在表面上殘留許多難以移除的氫原子。對此,我們額外考慮了表面存在額外氫原子的系統,發現額外的氫原子可以有效降低生成CH3OH的活化能。此外,我們也發現在較高的氫原子覆蓋率及氧缺陷的系統中可能使氫氣生成變得更加容易。微觀反應動力學的模擬則說明了CH3OH與CO2會於大約395K時產生、CO會於560K附近產生,這些動力學模擬數據也與我們合作的實驗團隊結果幾乎一致。另外,模擬結果顯示可以藉由控制系統溫度來改變CeO2(100)表面上的官能基。在230-300K時,表面上主要會存在CH3O基團,可以進行甲氧基化的加成反應;400-500K時,表面存在HCO基團與H原子,能夠進行反應物的氫化或者HCO的直接加成;溫度600K以上時,表面剩下大量的H原子,只能夠進行氫化反應。本篇計算結果能夠給予實驗學家更多關於溫度對CeO2(100)上基團選擇性的影響,並對後續研究有所幫助。


Due to its low toxicity, biodegradability, and various types of fragments, dimethyl carbonate (DMC) has been seen as an environment-friendly reagent in many applications. Recently, the CeO2 catalysts have been widely used in different territories and are reported to have different reaction selectivity with varying surface conditions. In this study, we use the density functional theory (DFT) calculations to explore the DMC decomposition reactions on the CeO2(100). The results show that the DMC can decompose into OCH3, CO3, and CO2 fragments with low activation energies. The CH3OH and the CO can be produced by the further hydrogenation or dehydrogenation of OCH3. Finally, only the H atoms are left on the surface and are hard to remove. The H-CeO2(100) system shows that methanol can be produced with lower activation energies. We also observe that the higher H coverage or oxygen vacancy amounts may lead to easier H2 formation. Furthermore, the microkinetic simulations reveal that the products can appear at the temperature of 395K (CH3OH and CO2) and 560K (CO). The microkinetic simulation data are also consistent with the observation of experiments from our collaborators. In addition, the simulation results show that the functional groups on the CeO2(100) surface can be altered by controlling the temperature of the system. The main species on the surface is OCH3 in the temperature range of 230-300K, which might continue the methoxylation reaction to other chemicals; within the temperature of 400-500K, the main species are HCO and H, which may apply to the hydrogenation or the HCO addition reactions of other reactants; when the temperature reaches over 600K, only the hydrogenation can occur due to a large number of H atoms on the surface. Our calculation results could give experimentalists more information about the effect of temperature on the intermediate selectivity of CeO2(100) and will be helpful for subsequent research.

Abstract 摘要 致謝 Contents List of Figures List of Tables Chapter 1. Introduction 1.1 Dimethyl carbonate 1.2 Cerium oxide 1.3 Present work Chapter 2. Theoretical Methodology 2.1 Computational detail 2.2 CeO2 model 2.2.1 Bulk 2.2.2 Surface Chapter 3. The decomposition of DMC on CeO2(100) surface 3.1 The adsorption of DMC on the pristine CeO2 (100) surface 3.2 The decomposition of DMC 3.2.1 The first step of the DMC decomposition 3.2.2 Carbonate pathway 3.2.3 CO2 pathway 3.2.4 Thermodynamic effects 3.3 The decomposition of formaldehyde 3.3.1 The dehydrogenation of H2CO(v) 3.3.2 The dehydrogenation of H2CO 3.3.3 Thermodynamic effects 3.4 Carbonate pathway with surface hydrogen 3.5 The formation of Ce-H on reduced CeO2 surface Chapter 4. Microkinetic simulation Chapter 5. Conclusions Appendix References

1. Ein-Eli, Y., Dimethyl carbonate (DMC) electrolytes–the effect of solvent purity on Li–ion intercalation into graphite anodes. Electrochemistry communications 2002, 4 (8), 644-648.
2. Piao, N.; Ji, X.; Xu, H.; Fan, X.; Chen, L.; Liu, S.; Garaga, M. N.; Greenbaum, S. G.; Wang, L.; Wang, C., Countersolvent electrolytes for lithium‐metal batteries. Advanced Energy Materials 2020, 10 (10), 1903568.
3. Zhuang, G.; Chen, Y.; Ross, P. N., The reaction of lithium with dimethyl carbonate and diethyl carbonate in ultrahigh vacuum studied by X-ray photoemission spectroscopy. Langmuir 1999, 15 (4), 1470-1479.
4. Bansode, A.; Urakawa, A., Continuous DMC synthesis from CO2 and methanol over a CeO2 catalyst in a fixed bed reactor in the presence of a dehydrating agent. Acs Catalysis 2014, 4 (11), 3877-3880.
5. Jiang, J.; Marin, C. M.; Both, A. K.; Cheung, C. L.; Li, L.; Zeng, X. C., Formation of dimethyl carbonate via direct esterification of CO 2 with methanol on reduced or stoichiometric CeO 2 (111) and (110) surfaces. Physical Chemistry Chemical Physics 2021, 23 (30), 16150-16156.
6. Marciniak, A. A.; Alves, O. C.; Appel, L. G.; Mota, C. J., Synthesis of dimethyl carbonate from CO2 and methanol over CeO2: Role of copper as dopant and the use of methyl trichloroacetate as dehydrating agent. Journal of Catalysis 2019, 371, 88-95.
7. Alexandrino, K.; Alzueta, M. U.; Curran, H. J., An experimental and modeling study of the ignition of dimethyl carbonate in shock tubes and rapid compression machine. Combustion and Flame 2018, 188, 212-226.
8. Pacheco, M. A.; Marshall, C. L., Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy & Fuels 1997, 11 (1), 2-29.
9. Zhang, G.; Liu, H.; Xia, X.; Zhang, W.; Fang, J., Effects of dimethyl carbonate fuel additive on diesel engine performances. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2005, 219 (7), 897-903.
10. Chen, Y., Recent advances in methylation: A guide for selecting methylation reagents. Chemistry–A European Journal 2019, 25 (14), 3405-3439.
11. Dahnum, D.; Seo, B.; Cheong, S.-H.; Lee, U.; Ha, J.-M.; Lee, H., Formation of defect site on ZIF-7 and its effect on the methoxycarbonylation of aniline with dimethyl carbonate. Journal of Catalysis 2019, 380, 297-306.
12. Gadge, S. T.; Mishra, A.; Gajengi, A. L.; Shahi, N. V.; Bhanage, B. M., Magnesium oxide as a heterogeneous and recyclable base for the N-methylation of indole and O-methylation of phenol using dimethyl carbonate as a green methylating agent. RSC Advances 2014, 4 (91), 50271-50276.
13. Straßmann, S.; Brehmer, T.; Passon, M.; Schieber, A., Methylation of cyanidin-3-O-glucoside with dimethyl carbonate. Molecules 2021, 26 (5), 1342.
14. Guo, B.; Li, S.; Tian, Y., Performance of cerium oxides from different preparation methods for desulfurizing hot coal gas. ACS omega 2019, 4 (5), 9301-9305.
15. Hirano, M.; Kato, E., Hydrothermal synthesis of cerium (IV) oxide. Journal of the American Ceramic Society 1996, 79 (3), 777-780.
16. Albrecht, P. M.; Mullins, D. R., Adsorption and reaction of methanol over CeO x (100) thin films. Langmuir 2013, 29 (14), 4559-4567.
17. Capdevila-Cortada, M.; García-Melchor, M.; López, N., Unraveling the structure sensitivity in methanol conversion on CeO2: A DFT+ U study. Journal of Catalysis 2015, 327, 58-64.
18. Liu, B.; Li, W.; Song, W.; Liu, J., Carbonate-mediated Mars–van Krevelen mechanism for CO oxidation on cobalt-doped ceria catalysts: facet-dependence and coordination-dependence. Physical Chemistry Chemical Physics 2018, 20 (23), 16045-16059.
19. Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P., Fundamentals and catalytic applications of CeO2-based materials. Chemical reviews 2016, 116 (10), 5987-6041.
20. Mullins, D. R.; Albrecht, P. M.; Chen, T.-L.; Calaza, F. C.; Biegalski, M. D.; Christen, H. M.; Overbury, S. H., Water dissociation on CeO2 (100) and CeO2 (111) thin films. The Journal of Physical Chemistry C 2012, 116 (36), 19419-19428.
21. Sudduth, B.; Yun, D.; Sun, J.; Wang, Y., Facet-Dependent selectivity of CeO2 nanoparticles in 2-Propanol conversion. Journal of Catalysis 2021, 404, 96-108.
22. Wu, Z.; Li, M.; Overbury, S. H., On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. Journal of Catalysis 2012, 285 (1), 61-73.
23. Hong, J.-E.; Ida, S.; Ishihara, T., Decreased sintering temperature of anode-supported solid oxide fuel cells with La-doped CeO2 and Sr-and Mg-doped LaGaO3 films by Co addition. Journal of Power Sources 2014, 259, 282-288.
24. Wang, S.; Jiang, S. P., Prospects of fuel cell technologies. National Science Review 2017, 4 (2), 163-166.
25. Um, N.; Hirato, T., Dissolution behavior of La2O3, Pr2O3, Nd2O3, CaO and Al2O3 in sulfuric acid solutions and study of cerium recovery from rare earth polishing powder waste via two-stage sulfuric acid leaching. Materials Transactions 2013, M-M2013802.
26. Walkey, C.; Das, S.; Seal, S.; Erlichman, J.; Heckman, K.; Ghibelli, L.; Traversa, E.; McGinnis, J. F.; Self, W. T., Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environmental Science: Nano 2015, 2 (1), 33-53.
27. Mullen, G. M.; Evans Jr, E. J.; Sabzevari, I.; Long, B. E.; Alhazmi, K.; Chandler, B. D.; Mullins, C. B., Water influences the activity and selectivity of ceria-supported gold catalysts for oxidative dehydrogenation and esterification of ethanol. ACS Catalysis 2017, 7 (2), 1216-1226.
28. Yao, S.; Xu, W.; Johnston-Peck, A.; Zhao, F.; Liu, Z.; Luo, S.; Senanayake, S.; Martínez-Arias, A.; Liu, W.; Rodriguez, J., Morphological effects of the nanostructured ceria support on the activity and stability of CuO/CeO 2 catalysts for the water-gas shift reaction. Physical Chemistry Chemical Physics 2014, 16 (32), 17183-17195.
29. Oh, S.-H.; Hoflund, G. B., Chemical state study of palladium powder and ceria-supported palladium during low-temperature CO oxidation. The Journal of Physical Chemistry A 2006, 110 (24), 7609-7613.
30. Trovarelli, A.; De Leitenburg, C.; Boaro, M.; Dolcetti, G., The utilization of ceria in industrial catalysis. Catalysis today 1999, 50 (2), 353-367.
31. Albrecht, P. M.; Jiang, D.-e.; Mullins, D. R., CO2 adsorption as a flat-lying, tridentate carbonate on CeO2 (100). The Journal of Physical Chemistry C 2014, 118 (17), 9042-9050.
32. Ji, Z.; Wang, X.; Zhang, H.; Lin, S.; Meng, H.; Sun, B.; George, S.; Xia, T.; Nel, A. E.; Zink, J. I., Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS nano 2012, 6 (6), 5366-5380.
33. Wu, Z.; Li, M.; Howe, J.; Meyer III, H. M.; Overbury, S. H., Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 2010, 26 (21), 16595-16606.
34. Vilé, G.; Colussi, S.; Krumeich, F.; Trovarelli, A.; Pérez‐Ramírez, J., Opposite face sensitivity of CeO2 in hydrogenation and oxidation catalysis. Angewandte Chemie International Edition 2014, 53 (45), 12069-12072.
35. Haxel, G., Rare earth elements: critical resources for high technology. US Department of the Interior, US Geological Survey: 2002; Vol. 87.
36. Choudhury, B.; Chetri, P.; Choudhury, A., Annealing temperature and oxygen-vacancy-dependent variation of lattice strain, band gap and luminescence properties of CeO2 nanoparticles. Journal of Experimental Nanoscience 2015, 10 (2), 103-114.
37. Wang, K.; Chang, Y.; Lv, L.; Long, Y., Effect of annealing temperature on oxygen vacancy concentrations of nanocrystalline CeO2 film. Applied Surface Science 2015, 351, 164-168.
38. Frayret, C.; Villesuzanne, A.; Pouchard, M.; Mauvy, F.; Bassat, J.-M.; Grenier, J.-C., Identifying doping strategies to optimize the oxide ion conductivity in ceria-based materials. The Journal of Physical Chemistry C 2010, 114 (44), 19062-19076.
39. Conesa, J., Computer modeling of surfaces and defects on cerium dioxide. Surface Science 1995, 339 (3), 337-352.
40. Nolan, M., Hybrid density functional theory description of oxygen vacancies in the CeO2 (1 1 0) and (1 0 0) surfaces. Chemical Physics Letters 2010, 499 (1-3), 126-130.
41. Wang, D.; Kang, Y.; Doan‐Nguyen, V.; Chen, J.; Küngas, R.; Wieder, N. L.; Bakhmutsky, K.; Gorte, R. J.; Murray, C. B., Synthesis and oxygen storage capacity of two‐dimensional ceria nanocrystals. Angewandte Chemie 2011, 123 (19), 4470-4473.
42. Zhang, W.; Pu, M.; Lei, M., Theoretical studies on the stability and reactivity of the metal-doped CeO2 (100) surface: toward H2 dissociation and oxygen vacancy formation. Langmuir 2020, 36 (21), 5891-5901.
43. Chen, F.; Liu, D.; Zhang, J.; Hu, P.; Gong, X.-Q.; Lu, G., A DFT+ U study of the lattice oxygen reactivity toward direct CO oxidation on the CeO 2 (111) and (110) surfaces. Physical Chemistry Chemical Physics 2012, 14 (48), 16573-16580.
44. Zafiris, G.; Gorte, R., Evidence for a second CO oxidation mechanism on Rh/ceria. Journal of Catalysis 1993, 143 (1), 86-91.
45. Zhong, S.-H.; Lu, G.; Gong, X.-Q., A DFT+ U study of the structures and reactivities of polar CeO2 (100) surfaces. Chinese Journal of Catalysis 2017, 38 (7), 1138-1147.
46. Yang, Z.; Woo, T. K.; Hermansson, K., Strong and weak adsorption of CO on CeO2 surfaces from first principles calculations. Chemical physics letters 2004, 396 (4-6), 384-392.
47. Laursen, S.; Combita, D.; Hungría, A. B.; Boronat, M.; Corma, A., First‐Principles Design of Highly Active and Selective Catalysts for Phosgene‐Free Synthesis of Aromatic Polyurethanes. Angewandte Chemie International Edition 2012, 51 (17), 4190-4193.
48. Amrute, A. P.; Mondelli, C.; Moser, M.; Novell-Leruth, G.; López, N.; Rosenthal, D.; Farra, R.; Schuster, M. E.; Teschner, D.; Schmidt, T., Performance, structure, and mechanism of CeO2 in HCl oxidation to Cl2. Journal of Catalysis 2012, 286, 287-297.
49. He, W.; Ran, J.; Niu, J.; Yang, G.; Ou, Z.; He, Z., Insight into the effect of facet-dependent surface and oxygen vacancies of CeO2 for Hg removal: From theoretical and experimental studies. Journal of hazardous materials 2020, 397, 122646.
50. Lou, Y.; Zhu, W.; Wang, L.; Yao, T.; Wang, S.; Yang, B.; Yang, B.; Zhu, Y.; Liu, X., CeO2 supported Pd dimers boosting CO2 hydrogenation to ethanol. Applied Catalysis B: Environmental 2021, 291, 120122.
51. Mei, D., First-principles characterization of formate and carboxyl adsorption on stoichiometric CeO2 (111) and CeO2 (110) surfaces. Journal of energy chemistry 2013, 22 (3), 524-532.
52. Reddy, K. P.; Deshpande, P. A., DFT+ U analysis of the stability of Pdn/CeO2− δ (n= 3, 4). Applied Surface Science 2022, 589, 152948.
53. Tang, S.; Xu, L.; Peng, B.; Xiong, F.; Chen, T.; Luo, X.; Huang, X.; Li, H.; Zeng, J.; Ma, Z., Ga-doped Pd/CeO2 model catalysts for CO oxidation reactivity: A density functional theory study. Applied Surface Science 2022, 575, 151655.
54. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science 1996, 6 (1), 15-50.
55. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B 1996, 54 (16), 11169.
56. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. Physical review B 1993, 47 (1), 558.
57. Kresse, G.; Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B 1994, 49 (20), 14251.
58. Blöchl, P. E., Projector augmented-wave method. Physical review B 1994, 50 (24), 17953.
59. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review b 1999, 59 (3), 1758.
60. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Physical review letters 1996, 77 (18), 3865.
61. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C.; Sutton, A. P., Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Physical Review B 1998, 57 (3), 1505.
62. Ha, H.; Yoon, S.; An, K.; Kim, H. Y., Catalytic CO oxidation over Au nanoparticles supported on CeO2 nanocrystals: effect of the Au–CeO2 interface. ACS Catalysis 2018, 8 (12), 11491-11501.
63. Spezzati, G.; Benavidez, A. D.; DeLaRiva, A. T.; Su, Y.; Hofmann, J. P.; Asahina, S.; Olivier, E. J.; Neethling, J. H.; Miller, J. T.; Datye, A. K., CO oxidation by Pd supported on CeO2 (100) and CeO2 (111) facets. Applied Catalysis B: Environmental 2019, 243, 36-46.
64. Puértolas, B. a.; Rellán-Piñeiro, M.; Núñez-Rico, J. L.; Amrute, A. P.; Vidal-Ferran, A.; López, N. r.; Pérez-Ramírez, J.; Wershofen, S., Mechanistic insights into the ceria-catalyzed synthesis of carbamates as polyurethane precursors. ACS Catalysis 2019, 9 (9), 7708-7720.
65. Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I., Van der Waals density functional for general geometries. Physical review letters 2004, 92 (24), 246401.
66. Klimeš, J.; Bowler, D. R.; Michaelides, A., Chemical accuracy for the van der Waals density functional. Journal of Physics: Condensed Matter 2009, 22 (2), 022201.
67. Klimeš, J.; Bowler, D. R.; Michaelides, A., Van der Waals density functionals applied to solids. Physical Review B 2011, 83 (19), 195131.
68. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. Physical review B 1976, 13 (12), 5188.
69. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of chemical physics 2000, 113 (22), 9901-9904.
70. Gerward, L.; Olsen, J. S.; Petit, L.; Vaitheeswaran, G.; Kanchana, V.; Svane, A., Bulk modulus of CeO2 and PrO2—An experimental and theoretical study. Journal of Alloys and Compounds 2005, 400 (1-2), 56-61.
71. Zhou, C.-Y.; Wang, D.; Gong, X.-Q., A DFT+ U revisit of reconstructed CeO 2 (100) surfaces: structures, thermostabilities and reactivities. Physical Chemistry Chemical Physics 2019, 21 (36), 19987-19994.
72. Arumugam, A.; Karthikeyan, C.; Hameed, A. S. H.; Gopinath, K.; Gowri, S.; Karthika, V., Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Materials Science and Engineering: C 2015, 49, 408-415.
73. Capdevila-Cortada, M.; López, N., Entropic contributions enhance polarity compensation for CeO2 (100) surfaces. Nature materials 2017, 16 (3), 328-334.
74. Matz, O.; Calatayud, M., Breaking H2 with CeO2: effect of surface termination. ACS omega 2018, 3 (11), 16063-16073.
75. Skorodumova, N.; Baudin, M.; Hermansson, K., Surface properties of CeO 2 from first principles. Physical Review B 2004, 69 (7), 075401.
76. Filot, I. A.; Van Santen, R. A.; Hensen, E. J., The optimally performing Fischer–Tropsch catalyst. Angewandte Chemie 2014, 126 (47), 12960-12964.
77. Van Santen, R.; Markvoort, A.; Filot, I.; Ghouri, M.; Hensen, E., Mechanism and microkinetics of the Fischer–Tropsch reaction. Physical chemistry chemical physics 2013, 15 (40), 17038-17063.
78. Ifergane, S.; David, R. B.; Sabatani, E.; Carmeli, B.; Beeri, O.; Eliaz, N., Hydrogen Diffusivity and Trapping in Custom 465 Stainless Steel. Journal of The Electrochemical Society 2018, 165 (3), C107.

無法下載圖示 全文公開日期 2024/08/17 (校內網路)
全文公開日期 2024/08/17 (校外網路)
全文公開日期 2024/08/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE