簡易檢索 / 詳目顯示

研究生: 李佳鴻
Chia-Hung Li
論文名稱: 混合式微波燒結鋅鈮鋯鈦酸鉛陶瓷與添加微量二氧化錳增進機械品質因子之研究
Hybrid Microwave Sintering for PZN-based Ceramics System and Manganese Addition to Improve Quality Factor
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 曾俊元
T.Y. Tseng
蘇裕軒
Yu-Hsuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 102
中文關鍵詞: 微波燒結機械品質因子機電耦合係數介電損失
外文關鍵詞: Microwave sintering, remnant polarization, coupling coefficient, dielectric loss
相關次數: 點閱:217下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要探討不同的燒結製程對0.4 (Pb(Zn1/3Nb2/3)O3+0.6 PbZr0.52Ti0.48O3 (0.4PZNZT)鐵電陶瓷系統的電性和微觀結構的影響,試片燒結方式採用傳統燒結與微波燒結兩種方式,利用微波燒結快速加熱的特質改善傳統燒結冗長的燒結時間,並改善材料特性,進一步探討微波燒結的機制與造成試片特性獲得改善的原因。此外,因為此材料的機械品質因子太低,試片會在電能與機械能轉換時,容易發熱造成能量損失,本實驗利用傳統製程添加微量的二氧化錳,做為硬性添加物,提升此材料的機械品質因子。
    微波燒結可以在比傳統燒結低的溫度下,獲得完全緻密的試片,因為微波燒結有較快的升、降溫速率,可以避免氧化鉛的揮發造成的焦綠石相。經過計算平均晶粒尺寸發現,在持溫時間90分鐘以下,微波燒結皆可以獲得較傳統燒結細小的晶粒尺寸,經過活化能的計算後發現,微波燒結活化能為134 kJ/mol約為傳統燒結活化能290 kJ/mol的一半,所以微波燒結可以降低活化能加速緻密化。微波燒結於1100 ℃持溫60分鐘時,有最大的殘留極化值45.67 μC/cm2,及機電耦合係數0.726,皆比傳統燒結於1150 ℃持溫2小時的最大值43.62 μC/cm2及0.681提升許多,原因在於微波燒結因為較快的升溫速率,可以避免晶粒過度成長,進而提升此材料之電氣特性。
    由於0.4PZNZT材料之機械品質因子過低,材料會因能量轉換而發熱,在傳統燒結1150 ℃持溫2小時下,添加入0.3 wt%的二氧化錳的硬性添加物,雖然機電耦合係數從0.681降至0.606,但可以使機械品質因子從原來的61提升至178,介電損失從3.8 %降低至0.58 %,微波燒結0.4PZNZT+0.3 wt% MnO2雖然可以在低溫短時間緻密化,但分佈不均勻的氧空缺使此材料的壓電性無法明顯的提升。


    In the present study, microstructure and electric properties of 0.4(Pb(Zn1/3Nb2/3)O3)+0.6PbZr0.52Ti0.48O3 (0.4PZNZT) specimen sintered by conventional and microwave sintering processes were successfully investigated and correlated. Microwave sintering is adopted to process the specimens at lower temperatures and for shorter times by rapid heating to avoid the high temperature and long sintering time in the conventional process. Moreover, the mechanism of microwave sintering process for the enhancement in properties is discussed.
    Better densification is achieved in the specimens of microwave sintered at temperatures lower than conventional sintering temperatures and the pyrochloric phase is also found to eliminate by rapid heating and cooling rates of microwave sintering. The average grain size of microwave sintered specimens is smaller than the conventional sintered specimens. From the kinetics of grain growth, the calculated activation energies for grain growth of microwave and conventional sintering specimens are 134 and 290 kJ/mol, respectively. Microwave sintering decreased the activation energy for grain growth in the specimens and caused faster condensing phenomenon. Because of faster heating rate in microwave sintering, the overall grain growth was restricted and improved the electric properties. Higher remnant polarization (45.67 μC/cm2) and electromechanical coupling coefficient (0.726) in the specimen of microwave sintered at 1100 ℃ for 1 hr is found to be higher than the remnant polarization (43.62 μC/cm2) and electromechanical coupling coefficient (0.681) of the conventional sintered specimen at 1150 ℃ for 2 hr.
    Addition of 0.3 wt% MnO2 to 0.4PZNZT reduced the electromechanical coupling factor from 0.681 to 0.606, but the mechanical quality factor increased from 61 to 178 and dielectric loss decreased from 3.8% to 0.58%. Higher quality factor and low loss with the addition of MnO2 to 0.4PZNZT are the requirements to use this material for device applications. Furthermore, better densification is achieved in the specimens of microwave sintered addition of 0.3 wt% MnO2 at lower temperature and soaking times. Because of oxygen vacancies distributed not uniform to cause incapable improvement electromechanical coupling factor.

    第一章 前言……………………………………………………………1 第二章 文獻回顧………………………………………………………3 2.1 簡介………………………………………………………………...3 2.2 微波與物質之交互作用……………………………………………4 2.3 微波燒結擴散理論………………………………………………...11 2.4 熱崩潰(thermal runaway)之現象與機制…………………………..18 第三章 實驗方法及材料特性分析……………………………………27 3.1實驗藥品規格…………………………………................................27 3-2實驗儀器規格………………………………………………………28 3-3實驗步驟……………………………………………………………30 3.3.1粉末製備…………………………………………………………..30 3.3.2成型(forming)……………………………………………………..30 3.3.3 燒結(sintering)…………………………………………………...30 3.3.4電極與極化處理製作……………………………………………..31 3.3.5基本性質量測與觀察……………………………………………..32 3-4電性量測……………………………………………………………33 3.4.1 極化值與電場(P-E)曲線量測………………………………33 3.4.2 介電常數對溫度(D-T)曲線量測……………………………33 3.4.3 壓電特性量測…………………………………………………..34 第四章不同燒結製程對鋅鈮鋯鈦酸鉛陶瓷特性之研究……………39 4.1 感應體(susceptor)對微波燒結製程的影響……………………...40 4.1.1 感應體如何選擇………………………………………………..40 4.1.2 感應體(SiC)與升溫曲線之關係……………………………….41 4.2 微波燒結和傳統燒結特性之比較………………………………47 4.2.1 微波燒結與傳統燒結升溫曲線的比較………………………47 4.2.2 微波燒結和傳統燒結的x-ray與密度之比較………………..48 4.2.3 微波燒結PZNZT之微觀結構………………………………..53 4.2.4傳統燒結PZNZT之微觀結構…………………………………58 4.2.5 晶粒成長動力學【40】………………………………………………61 4.2.6 微波燒結與傳統燒結之擴散動力學……...................................62 4.3 微波燒結PZNZT陶瓷之電氣特性………………………………66 4.3.1 微波燒結PZNZT陶瓷之鐵電特性…………………………….66 4.3.2 微波燒結PZNZT陶瓷之壓電特性…………………………….71 4.4在傳統製程下添加微量MnO2於鋅鈮鋯鈦酸鉛陶瓷之影響……79 4.4.1 為何要添加MnO2……………………………………………….79 4.4.2 添加入MnO2對鈣鈦礦成相的影響…………………………….81 4.4.3 添加MnO2對鋅鈮鋯鈦酸鉛陶瓷鐵電、壓電特性之影響……84 4.4.3 添加MnO2對鋅鈮鋯鈦酸鉛陶瓷介電、品質因子特性之影響…88 4.5 微波製程下添加微量MnO2於鋅鈮鋯鈦酸鉛陶瓷之影響……….91 4.5.1 X-ray繞射圖及密度……………………………………………...91 4.5.2壓電特性…………………………………………………………..93 第五章 結論……………………………………………………………95 參考文獻………………………………………………………………..98

    1.W. H. Sutton, “Microwave Processing of Ceramics an Overview”, Microwave Processing of materials III, Mater. Res. Soc. Symp, Proc., Vol. 269, pp. 3-20(1992).
    2.W. H. Sutton, “Microwave Processing of Ceramics Materials”, Am. Ceram. Soc. Bull., Vol. 68, pp. 376-386(1989).
    3.Robert E. Collin, “Foundations for Microwave Engineering”, McGraw-Hill, New York, 2nd ed., pp. 450-476(1992).
    4.A. R. Von Hippel, “Dielectric Materials and Applications”, the Technology Press of M. I. T. and John Willey & Sons, New York., pp.3-9(1954).
    5.J. M. Osepchuk, “A History of Microwave Heating Applications”, IEEE Trans. Microwave Theory & Tech., Vol. MTT-32, Vol. 9, pp. 1200-1224(1984).
    6.Ion Bunget and Mihai Popescu, “Physics of Solid Dielectrics”, Elsevier Ansterdan-Oxford-New York-Tokyo., pp.282(1984).
    7.D. Michael, P. Mingos, and David R. Baghurst, “Applications of Microwave Dielectric heating Effects to Synthetic Problems in Chemistry”, Chem. Soc. Rev., Vol. 20, pp. 1-47(1991).
    8.B. Meng, J. Booske, R. Cooper, and S. Freeman, “Microwave Absorption in NaCl Crystals with Various Controlled Defect Conditions”, Mat. Res. Soc. Symp. Proc., Vol. 347, pp. 467-72 (1994).
    9.J. A. Eastman, K. E. Sickafus, J. D. Katz, S. G. Boeke, R. D. Blake, C. R. Evans, R. B. Schwarz, and Y. X. Liao, “Microwave sintering of Nanocrystalline TiO2”, J. Jpn. Appl. Phys., Vol. 38, pp. 173-78 (1990).
    10.D. L. Johnson, “Microwave Heating of Grain Boundaries in Ceramics,” J. Am. Ceram., Soc., Vol. 74, No. 4, pp. 849-50 (1991).
    11.M. A. Janey and H. D. Kimrey, “Diffusion-Controlled Processes in Microwave-Fired Oxide Ceramics,” Mater. Res. Soc. Symp. Proc., Vol. 189, pp. 215-27 (1990).
    12.H. D. Kimrey, J. O.Kiggans, M. A. Janney and R. L. Beatty, “Microwave Sintering of Zirconia-Toughened Alumina Composites,” Mater. Res. Soc. Symp. Proc., Vol. 189, pp. 243-55 (1990).
    13.M. A. Janney and H. D. Kimrey, “Microwave Sintering of Alumina at 28 GHz,” Ceram. Trans., Vol. 1 (II B), 919-924 (1998).
    14.M. A. Janney, H. D. Kimrey, M. A. Schmidet and J. O. Kiggans, “Grain Growth in Microwave-Annealed Alumina,” J.Am. Ceram. Soc., Vol. 74, No. 4, pp. 1675-81 (1991).
    15.M. A. Janney, C. L. Calhoun, and H. D. Kimery, “Microwave Sintering of Zirconia-8 mol% Yttria,” in Microwave: Theory and Application in Materials Processing, Ceram. Trans., Vol. 21, pp. 311-318 (1991).
    16.M. A. Janney, C. L. Calhoun, and G. D. Kimery, “Microwave Sintering of Solid Oxide Fuel Cell Materials: I. Zirconia-8 mol% Yttria,” J.Am. Ceram. Soc., Vol. 75, No. 2, pp.341-346 (1992).
    17.M. A. Janney, H. D. Kimrey, nd J. O. Kiggans, “Microwave Processing of Ceramics, Guidelines Used at the Oak Ridge National Laboratory,” in Microwave Processing of Material III, Mater. Res. Soc. Symp. Proc., Vol. 269, pp. 173-85 (1992).
    18.M. A. Janney, M. L. Jackson, and H. D. Kimery, “Microwave Sintering of ZrO2-12 mol% CeO2,” in Microwaves: Theory and Application in Materials Processing II, Ceram. Trans., Vol. 36, pp. 101-108 (1993).
    19.Y. V. Bykov, A. F. L. Goldenberg, and V. A. Flyagin, “The Possibilities of Material Processing by Intense Millimeter-wave Radiation,” in Microwave Processing of Materials II, Mater. Res. Soc. Symp. Proc., Vol. 189, pp. 41-42 (1990).
    20.D. Michael, P. Mingos, and David R. Baghurst, “Applications of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry,” Chem. Soc. Rev., Vol. 20, pp. 1-47 (1991).
    21.Y. L. Tian and D. L Johnson, M. E. Brodwin, “Ultrafine Microstructure of Al2O3 Produced by Microwave Sintering,” in Ceramic Powder Science, II, Ceram. Trans., Vol. 1 [II B], 925-32 (1988).
    22.T. N. Tiegs, J. O. Kiggans, Jr., and H.D. Kimrey. Jr., “Microwave Processing of Silicon Nitride,” in Microwave Processing of Miaterials II, Mater. Res. Soc. Symp. Proc., Vol. 189, pp. 267-72(1990).
    23.J. Samuels, J. R. Brandon, “Effect of Composition on the Enhanced Microwave Sintering of Alumina-based Ceramic Composites,” J. Mater. Sci., Vol. 27, pp. 3259-65 (1992).
    24.J. H. Booske, R. F, Cooper and I. Dobson, “Mechanisms for Nonthermal Effects on Ionic Mobility during Microwave Processing of Crystalline Solides,” J. Mater. Res., Vol. 7, No. 2, pp. 495-501 (1992).
    25.J. H. Booske, R. F, Cooper and I. Dobson, “Mechanisms for Nonthermal Effects on Ionic Mobility during Microwave Processing of Crystalline Solides,” in Microwaves: Theory and Application Materials Processing, Ceram. Trans., Vol. 32, pp. 285-192 (1991).
    26.R. E. Newham, S. J. Jang, M. Xu and F. Jones, “Fundamental Interaction Mechanizms between Microwave and Matter,” Ceram. Trans., Vol. 21, pp. 51-67 (1991).
    27.A. J. Berteand and J. C. Badet, “High Temperature Microwave Heating in Refractory Materials,” J. Microwave Power, Vol. 11, pp. 315-320 (1976).
    28.T. T. Meek, “Proposed Model for the Sintering of a Dielectric in a Microwave Field,” J. Mater, Sci. Lett., Vol. 6, pp. 638-40 (1987).
    29.V. K. Varadan, Y. Ma, A. Lakhtakia and V. V. Varadan, “Microwave Sintering of Ceramics,” in Microwave Processing of Materials I, Mater. Res. Soc. Symp, Proc., Vol. 124, pp. 45-57 (1988).
    30.V. M. Kenkre, L. Skala, M. W. Weiser and J. D. Katz, “Theory of Microwave Effects on Atomic Diffusion in Sintering: Basic Consideration of the Phenomenon of Thermal Runaway,” in Microwave Processing of Materials II, Mater. Res. Soc. Symp. Proc., Vol. 189, pp. 179-84 (1990).
    31.T. T. Meek, C. E. Holcombe, N. Dykes, “Microwave Sinterng of some Oxide Materials Using Sintering Aids,” J. Mater. Sci. Lett., Vol. 6, pp. 1060-62 (1987).
    32.Q. Jiang, W. Cao and L. E. Cross,” Electric Fatigue in Lead Zirconate Titanate Ceramics”, J. Am. Ceram. Soc., Vol. 77, No. 1, pp. 211-215(1994).
    33.吳夏語,“鋅鈮鋯鈦酸鉛材料系統應用於超音波元件之電性和疲勞研究”, 國立台灣科技大學博士論文. (2006)
    34.D. E. Clark and W. H. Sutton,”Microwave Processing of Materials”, Annual Reviews of Materials Science 26, 299-331(1996).
    35.D. E. Clark, Ceramic Engineering and Science Proceedings 8, 14-7(1992).
    36.Rajiv K. Singh, John Viatella, Zak Fathi, and David E. Clark,”Thermal Analysis of Microwave Processing of Ceramics”, Ceramic transaction 36, 247-255(1993).
    37.李振良,“微波燒結鋅鈮鋯鈦酸鉛陶瓷系統之特性及微觀研究”, 國立台灣科技大學博士論文. (2005)
    38.M. I. Mendelson, “Average Grain Size in Polycrystalline Ceramic”, J. Am. Ceram. Soc., Vol. 52, pp. 443-446(1969).
    39.Joel D. Katz, ”Microwave Sintering of Ceramics”, Annual Reviews of Materials Science., Vol. 70, pp. 153-170(1992).
    40.Bharat B. Panigrahi, “Sintering and grain growth kinetics of ball milled nanocrystalline nickel powder”, Mater. Sci. Eng. A., Vol. 7, pp. 1-7(2007).
    41.M. A. Janney and H. D. Kimrey, ”Diffusion-controlled processes in microwave-fired oxide ceramic”, Mater. Res. Symp. Proc., Vol. 189, pp. 215-227(1990).
    42.J. D. Katz and R. D. Blake, V. M. Kenkre, “Microwave Enhanced Diffusion in Materials: Theory and Application in Materials Processing,” Ceram. Trans., Vol. 21, pp. 95-105(1991).
    43.J. Samuels, J. R. Brandon, “Effect of Composition on the Enhanced Microwave Sintering of Alumina-based Ceramic Composites”, J. Mater. Sci., Vol. 27, pp. 3259-65(1992).
    44.J. Cheng, J. Qiu, J. Zhou and N. Ye, “Densification Kinetics of Alumina during Microwave Sintering”, in Microwave Processing of Materials III, Mater. Res. Soc. Symp. Proc., Vol. 269, pp. 323-328(1992).
    45.F. Selmi, F. Guerin, X. P. Yu, V. K. Varadan, V. V. Varadan, and S. Komarneni, “Microwave Calcination and Sintering of Barium Strontium Titanate”, Mater. Lett., Vol. 12, pp.424-428(1992).
    46.J. D. Katz, R. D. Blake and V. M. Kenre,” Microwave enhanced Diffusion?”,Ceram. Trans., Vol. 21, pp. 95-105(1991).
    47.D. S. Paik, S. E. Park, S. Wada, S. F. Liu and T. R. Shrout,” E-field induced phase transition in <001>-oriented rhombohedral 0.92 Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 crystals,” J. Appl. Phys., Vol. 85, No. 2, pp. 1080-1083 (1999).
    48.S. F. Liu, S. E. Park, T. R. Shrout and L. E. Cross,” Electric field dependence of piezoelectric properties for rhombohedral 0.955 Pb(Zn1/3Nb2/3)O3-0.045PbTiO3 single crystals,” J. Appl. Phys., Vol. 85, No. 5, pp. 2810-2814 (1999).
    49.G. Arlt,” Review Twinning in ferroelectric and ferroelastic ceramics: stress relief,” J. Mater. Sci., Vol. 25, pp. 2655-2666 (1990).
    50.M. Marvan, J. Erhart and J. Fousek,” Role of soft dielectric energy in poling crystals or ceramics and domain average engineering,” Appl. Phys. Lett., Vol. 84, No. 3, pp. 768-770 (2004).
    51.K. Fujimoto and Y. Cho,” High-speed switching of nanoscale ferroelectric domains in congruent single-crystal LiTaO3,” Appl. Phys. Lett., Vol. 83, No. 25, pp. 5265-5267 (2003).
    52.M. H. Lente, A. Picinin, J. P. Rino and J. A. Eiras,” 90˚ domain wall relaxation and frequency dependence of the coercive field in the ferroelectric switching process,” J. Appl. Phys., Vol. 95, No. 5, pp. 2646-2653 (2004).
    53.H. Takahashi, “Lead-Free Barium Titanate Ceramics with Large Piezoelectric Constant Fabricated by Microwave Sintering”, J. J. Applied. Physics., Vol. 45, No. 1, pp.30-32(2006).
    54.S. Wada, K. Yako, H. Kakemoto, and T. Tsurumi, “Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes”, Journal of Applied Physics., Vol. 98, pp.014109-1~7(2005).
    55.G. C Zhdanov, Solid State Physics, Vol 1. Moscow University Press, Moscow, pp.184(1961).
    56.T. Kamiya, T. Suzuki, T. Tsurumi, “Effects of Manganese Addition on Piezoelectric Properties of Pb(Zr0.5Ti0.5)O3”, Jpn. J. Appl. Phys. Vol. 31, pp.3058-3060(1992).

    無法下載圖示 全文公開日期 2009/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE