簡易檢索 / 詳目顯示

研究生: 李杰陽
Jie-Yang Li
論文名稱: 石墨奈米牆材料及其氫氧鎳鈷複合材料之非對稱式超級電容器應用
Graphite Nanowalls Materials and its Nickel-Cobalt hydroxide composites for Asymmetric Supercapacitors applications
指導教授: 戴龑
Yian Tai
口試委員: 陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 150
中文關鍵詞: 超級電容石墨氫氧鎳鈷
外文關鍵詞: supercapacitors, graphite, nickel-cobalt hydroxide
相關次數: 點閱:235下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非對稱式超級電容器是一種兼具高功率密度與高能量密度的一新型儲電元件,主要是利用正極與負極材料之工作電位互補進而獲得更高的工作電位,並且結合擬電容與電雙層電容兩者優點,而得到更高的能量密度與功率密度,成為近年來在儲電元件中,熱門研究議題。
    在電池業界上,活物重量往往佔不到總體重量的50%,因此造成過多不必要的重量或是必須增加電池串聯數量來達到高能量密度輸出,因此開發極輕薄電極便是使超級電容邁向更高效能的關鍵。本研究利用靜電紡絲技術製備聚丙烯腈奈米,再經熱處理後得到碳奈米纖維,相較於市售之碳布重量降低98.5%,且具有良好電化學特性與導電性。
    在負極電極材料,本實驗係由微波電漿化學氣相沉積法製備直立式石墨奈米牆,在1M 硫酸電解液下,當電流密度為 1 A/g其電容值表現為286 F/g;且在經過5000次充放電後其電容值保持約95%以上;而在1M 氫氧化鉀電解液下,當電流密度為 1A/g其電容值表現為225 F/g。
    在正極電極材料,利用電沉積方式沉積氫氧化鎳鈷水合物,並以石墨奈米牆作為中間導電層提升導電度,使得氫氧化鎳鈷水合物在進行氧化還原反應時可以擁有完整的氧化還原峰且並不歪斜。利用電流密度0.25 mA/cm2進行電沉積與1250秒電沉積時間具有最佳電容值表現,在1M 氫氧化鉀電解液下,當電流密度為 1A/g其電容值表現為131 F/g。並也利用最佳電沉積條件針對氫氧化鎳鈷水合物、氫氧化鎳和氫氧化鈷進行穩定性測試,氫氧化鎳鈷水合物因為有穩定性較高之Co2+摻入結構中,因此抑制了Ni(OH)2之相轉變,而可以擁有較氫氧化鈷高之電容值外,其穩定性也相當好。
    利用上述正極與負極電極設計非對稱式超級電容器,可將工作電位擴充至1.6 V,且循環伏安法與充放電圖呈現對稱,並無其他反應發生。在電流密度0.5 A/g下,其能量密度達16.8 W h/kg且功率密度為370 W/kg;在電流密度5 A/g下,其能量密度達13.9 W h/kg且功率密度為3690 W/kg,將結果整理在Ragone Plot上可以看到成功提高能量密度。


    Asymmetric supercapacitor is a kind of novel energy storage devices, which has high power density with high energy density. Asymmetric supercapacitor not only takes the two different working potential of positive electrode and negative electrode to enlarge the cell operating potential, but also combines the advantages of electric double layer capacitors and pseudocapacitors to enhance the energy density and power density. Nowadays, the asymmetric supercapacitor has been become popular research topic in energy storage devices.
    In this study, we use the electrospining technology to produce the polyacrylonitrile nanofiber and two steps of heat treatment to produce high quality carbon nanofiber serves as ultralight substrate of electrode.
    The vertically-aligned graphite nanowalls (GNWs) were fabricated on electrospun carbon nanofibers via microwave plasma-enhanced chemical vapor deposition. When utilizing GNWs as the electrode matericals of supercapacitors, the specific capacitance of value 286 F/g and 225 F/g can be achieved at current density 1 A/g in 1M H2SO4 and 1M KOH, respectively. After 5000 cycles of charge and discharge, the retention of capacitance still maintains 95%.
    Electrodeposition method was used to deposit the binary nikel-cobalt hydroxides on the GNWs as positive electrode. The specific capacitance value of 131 F/g can be achieved at current density 1 A/g in 1M KOH. Because of the presence of Co2+ depress the capacity loss is reduced during long charge and discharge, the specific capacitance still maintains 94% after 2000 cycles.
    The asymmetric supercapacitor with a positive electrode of NixCo1-x(OH)2 and negative electrode of GNWs shows a superior energy density of 16.8 W h/kg with a power density 370W/kg at a current density of 0.5 A/g; while an energy density of 13.9 W h/kg with a power density 3690W/kg at current denity 5 A/g.

    中文摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XII 表目錄 XVIII 第一章 緒論 1 1-1 前言 1 1-2 超級電容簡介 3 1-2-1 超級電容器的構造 4 1-3 儲能元件輕量化 5 1-4 非對稱式超級電容(Asymmetric Supercapacitor) 5 1-5 研究動機 7 第二章 原理及文獻回顧 9 2-1 電紡絲(Electrospinning) 9 2-1-1 電紡絲原理 9 2-1-2 電紡絲發展及其應用 11 2-2 聚丙烯腈(Polyacrylonitrile, PAN) 12 2-2-1 聚丙烯腈奈米纖維 13 2-3 奈米碳纖維 14 2-3-1 聚丙烯腈奈米纖維穩定化程序(Stabilization) 14 2-3-2 碳化程序(Carbonization) 17 2-3-3 石墨化程序(Graphitization) 19 2-3-4 熱處理聚丙烯腈纖維時的氣體種類 19 2-4 石墨烯(Graphene) 21 2-4-1 石墨烯特性 23 2-4-2 石墨烯製備方法 26 2-4-2-1 機械剝離法 27 2-4-2-2 氧化石墨烯還原法 27 2-4-2-3 石墨烯脫層法 29 2-4-2-4 碳化矽熱裂解法 29 2-4-2-5 化學氣相沉積法(Chemical Vapor Deposition, CVD) 30 2-4-2-6 電漿輔助氣相沉積(Plasma-Enhanced CVD) 32 2-5 超級電容器(Supercapacitors) 34 2-5-1 電雙層原理(Electric Double Layer Capacitors) 35 2-5-1-1 石墨烯作為EDLCs電極材料 38 2-5-2 擬電容(Pseudocapacitors) 41 2-5-2-1 混合石墨烯與擬電容材料作為電極材料 43 2-5-3 非對稱式超級電容器(Asymmetric Supercapacitor) 50 第三章 實驗方法與步驟 53 3-1 實驗流程圖 53 3-2 實驗藥品及材料 54 3-3 實驗儀器 55 3-3-1 電紡織裝置 55 3-3-2 爐管式高溫爐 56 3-3-3 微波電漿輔助化學氣相沉積系統(MW-PECVD) 57 3-4 實驗方法 59 3-4-1 靜電紡絲技術製備聚丙烯腈奈米纖維 59 3-4-2 高溫爐館炭化聚丙烯腈纖維 61 3-4-3 微波電漿氣象化學沉積法成長石墨奈米牆 62 3-4-4 利用電沉積法(Electrodeposition)沉積氫氧化鎳鈷水合物 64 3-5 分析儀器 65 3-5-1 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, SEM) 65 3-5-2 拉曼振動光譜儀(Raman Spectrum) 67 3-5-3 X光射線電子能譜儀(X-ray photoelectron spectroscopy, XPS) 69 3-5-4 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 70 3-5-5 熱重量分析儀(Thermogravimetric Analysis, TGA) 72 3-5-6 傅立葉轉換紅外線光譜儀(FTIR Spectrometer) 73 3-5-7 恆電位分析儀(Potential Stat) 75 第四章 實驗結果與討論 78 4-1 聚丙烯腈(PAN)製備與其特性分析 79 4-1-1 以不同濃度之PAN溶液進行電紡織 79 4-2 PAN奈米纖維進行熱處理碳化程序 82 4-2-1 PAN奈米纖維之穩定化溫度決定 82 4-2-2 碳化熱處理穩定化之奈米纖維 84 4-3 奈米碳纖維(CNF)特性分析 86 4-3-1 傅立葉轉換紅外線光譜儀分析 86 4-3-2 XPS成份分析 88 4-3-3 SEM分析 90 4-3-4 電化學可逆性測試 92 4-4 GNWs/CNF作為電極之特性分析與電化學測試 94 4-4-1 SEM分析 94 4-4-2 TEM分析 96 4-4-3 拉曼振動光譜分析 98 4-4-4 電化學特性 100 4-5 NixCo1-x(OH)2/GNWs/CNF作為電極特性分析與電化學測試 110 4-5-1 電沉積氫氧化鎳鈷水合物前處理 111 4-5-2 以GNWs作為氫氧化鎳鈷水合物與CNF之導電層 113 4-5-3 電沉積氫氧化鎳鈷水合物之電流選擇 114 4-5-4 電沉積氫氧化鎳鈷水合物之時間選擇 118 4-5-5 電化學特性 121 4-5-6 XPS成份分析 127 4-6 組裝非對稱式超級電容器 128 4-6-1 非對稱式超級電容器 130 第五章 結論 135 參考文獻 138

    1. Richard Smalley. \iWikipedia, the free encyclopedia (2015).
    2. The U.S. Energy Information Administration. \iThe U.S. Energy Information Administration
    3. Zhang, Y. et al. Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrog. Energy 34, 4889–4899 (2009).
    4. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M. & Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253 (2003).
    5. Anton, F. Method and apparatus for spinning.
    6. Anton, F. Artificial thread and method of producing same.
    7. Anton, F. Process and apparatus for preparing artificial threads.
    8. Anton, F. Production of artificial fibers from fiber forming liquids.
    9. Harold L, S. Process and apparatus for producing patterned non-woven fabrics.
    10. Baumgarten, P. K. Electrostatic spinning of acrylic microfibers. J. Colloid Interface Sci. 36, 71–79 (1971).
    11. Polyacrylonitrile. Wikipedia, the free encyclopedia (2015).
    12. Dzenis, Y. & Wen, Y. Continuous Carbon Nanofibers For Nanofiber Composites. in Symposium U – Advanced Fibers, Plastics, Laminates and Composites 702, (2001).
    13. Wangxi, Z., Jie, L. & Gang, W. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon 41, 2805–2812 (2003).
    14. Yusof, N. & Ismail, A. F. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review. J. Anal. Appl. Pyrolysis 93, 1–13 (2012).
    15. Ismail, A. F., Rana, D., Matsuura, T. & Foley, H. C. Carbon-based Membranes for Separation Processes. (Springer Science & Business Media, 2011).
    16. Donnet, J.-B. & Bansal, R. C. Carbon Fibers, Third Edition,. (CRC Press, 1998).
    17. Rahaman, M. S. A., Ismail, A. F. & Mustafa, A. A review of heat treatment on polyacrylonitrile fiber. Polym. Degrad. Stab. 92, 1421–1432 (2007).
    18. Dalton, S., Heatley, F. & Budd, P. M. Thermal stabilization of polyacrylonitrile fibres. Polymer 40, 5531–5543 (1999).
    19. Sánchez-Soto, P. J. et al. Thermal study of the effect of several solvents on polymerization of acrylonitrile and their subsequent pyrolysis. J. Anal. Appl. Pyrolysis 58, 155–172 (2001).
    20. Ko, T.-H. Influence of continuous stabilization on the physical properties and Microstructure of PAN-Based Carbon Fibers.pdf.
    21. Ko, T.-H. The influence of pyrolysis on physical properties and microstructure of modified PAN fibers during carbonization. J. Appl. Polym. Sci. 43, 589–600 (1991).
    22. Martin, S. C., Liggat, J. J. & Snape, C. E. In situ NMR investigation into the thermal degradation and stabilisation of PAN. Polym. Degrad. Stab. 74, 407–412 (2001).
    23. Edie, D. D. The effect of processing on the structure and properties of carbon fibers. Carbon 36, 345–362 (1998).
    24. Ogawa, H. & Saito, K. Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilization index. Carbon 33, 783–788 (1995).
    25. JB, D. & RC, B. New aspects in the oxidative stabilization of PAN-based carbon.pdf. Carbon 34, 1427–1445 (1996).
    26. Fitzer, E., Frohs, W. & Heine, M. Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres. Carbon 24, 387–395 (1986).
    27. Gupta, A. & Harrison, I. R. New aspects in the oxidative stabilization of PAN-based carbon fibers: II. Carbon 35, 809–818 (1997).
    28. Mittal, J., Bahl, O. P. & Mathur, R. B. Single step carbonization and graphitization of highly stabilized PAN fibers. Carbon 35, 1196–1197 (1997).
    29. Mathur, R. B., Bahl, O. P. & Mittal, J. A new approach to thermal stabilisation of PAN fibres. Carbon 30, 657–663 (1992).
    30. Trinquecoste, M., Carlier, J. L., Derré, A., Delhaès, P. & Chadeyron, P. High temperature thermal and mechanical properties of high tensile carbon single filaments. Carbon 34, 923–929 (1996).
    31. Lee, J. K. et al. Influence of tension during oxidative stabilization on SO2 adsorption characteristics of polyacrylonitrile (PAN) based activated carbon fibers. Carbon 35, 837–843 (1997).
    32. Wang, P. H. Conversion of polyacrylonitrile fibers to activated carbon fibers: Effect of preoxidation extent. J. Appl. Polym. Sci. 62, 1771–1773 (1996).
    33. Lee, J. K. et al. Electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries. Carbon 39, 1299–1305 (2001).
    34. Sung, M. G., Sassa, K., Ogawa, H., Tanimoto, Y. & Asai, S. Strengthening of Carbon Fibers by Imposition of a High Magnetic Field in a Carbonization Process. Mater. Trans. 43, 2087–2091 (2002).
    35. Chand, S. Review carbon fibers for composites. J. Mater. Sci. 35, 1303–1313 (2000).
    36. Kaburagi, M., Bin, Y., Zhu, D., Xu, C. & Matsuo, M. Small angle X-ray scattering from voids within fibers during the stabilization and carbonization stages. Carbon 41, 915–926 (2003).
    37. Mittal, J., Mathur, R. B., Bahl, O. P. & Inagaki, M. Post spinning treatment of PAN fibers using succinic acid to produce high performance carbon fibers. Carbon 36, 893–897 (1998).
    38. Nielsen, M., Jurasek, P., Hayashi, J. & Furimsky, E. Formation of toxic gases during pyrolysis of polyacrylonitrile and nylons. J. Anal. Appl. Pyrolysis 35, 43–51 (1995).
    39. Belitskus, D. Fiber and Whisker Reinforced Ceramics for Structural Applications. (CRC Press, 1993).
    40. Su, D. S., Perathoner, S. & Centi, G. Nanocarbons for the Development of Advanced Catalysts. Chem. Rev. 113, 5782–5816 (2013).
    41. Jiang, H., Lee, P. S. & Li, C. 3D carbon based nanostructures for advanced supercapacitors. Energy Env. Sci 6, 41–53 (2013).
    42. Novoselov, K. S. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666–669 (2004).
    43. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).
    44. Calizo, I., Balandin, A. A., Bao, W., Miao, F. & Lau, C. N. Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers. Nano Lett. 7, 2645–2649 (2007).
    45. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011).
    46. Nika, D. L. & Balandin, A. A. Two-dimensional phonon transport in graphene. J. Phys. Condens. Matter 24, 233203 (2012).
    47. De, S. & Coleman, J. N. Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films? ACS Nano 4, 2713–2720 (2010).
    48. Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).
    49. Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).
    50. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).
    51. Lu, Y.-H., Zhou, M., Zhang, C. & Feng, Y.-P. Metal-Embedded Graphene: A Possible Catalyst with High Activity. J. Phys. Chem. C 113, 20156–20160 (2009).
    52. Xue, T. et al. Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst. Angew. Chem. Int. Ed. 51, 3822–3825 (2012).
    53. Latil, S. & Henrard, L. Charge Carriers in Few-Layer Graphene Films. Phys. Rev. Lett. 97, 036803 (2006).
    54. Partoens, B. & Peeters, F. M. From graphene to graphite: Electronic structure around the $K$ point. Phys. Rev. B 74, 075404 (2006).
    55. Hummers, W. S. & Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).
    56. Park, S. & Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009).
    57. Li, D., Müller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008).
    58. Fan, X. et al. Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation. Adv. Mater. 20, 4490–4493 (2008).
    59. Luo, D., Zhang, G., Liu, J. & Sun, X. Evaluation Criteria for Reduced Graphene Oxide. J. Phys. Chem. C 115, 11327–11335 (2011).
    60. Gao, J. et al. Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid. Chem. Mater. 22, 2213–2218 (2010).
    61. McAllister, M. J. et al. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chem. Mater. 19, 4396–4404 (2007).
    62. 黃淑娟. 石墨烯材料的應用展望. (2012).
    63. de Heer, W. A. et al. Epitaxial graphene. Solid State Commun. 143, 92–100 (2007).
    64. Norimatsu, W. & Kusunoki, M. Formation process of graphene on SiC (0 0 0 1). Phys. E Low-Dimens. Syst. Nanostructures 42, 691–694 (2010).
    65. Li, X., Cai, W., Colombo, L. & Ruoff, R. S. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Lett. 9, 4268–4272 (2009).
    66. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).
    67. Bhuvana, T. et al. Contiguous Petal-like Carbon Nanosheet Outgrowths from Graphite Fibers by Plasma CVD. ACS Appl. Mater. Interfaces 2, 644–648 (2010).
    68. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008).
    69. Zhang, L. L. & Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009).
    70. Qu, D. & Shi, H. Studies of activated carbons used in double-layer capacitors. J. Power Sources 74, 99–107 (1998).
    71. Liu, C., Bard, A. J., Wudl, F., Weitz, I. & Heath, J. R. Electrochemical Characterization of Films of Single‐Walled Carbon Nanotubes and Their Possible Application in Supercapacitors. Electrochem. Solid-State Lett. 2, 577–578 (1999).
    72. Frackowiak, E., Metenier, K., Bertagna, V. & Beguin, F. Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett. 77, 2421–2423 (2000).
    73. Stoller, M. D., Park, S., Zhu, Y., An, J. & Ruoff, R. S. Graphene-Based Ultracapacitors. Nano Lett. 8, 3498–3502 (2008).
    74. Zhu, Y. et al. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 332, 1537–1541 (2011).
    75. Zhang, L. L. et al. Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors. Nano Lett. 12, 1806–1812 (2012).
    76. Lei, Z., Christov, N. & Zhao, X. S. Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy Environ. Sci. 4, 1866–1873 (2011).
    77. Fan, Z. et al. A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors. Adv. Mater. 22, 3723–3728 (2010).
    78. Winter, M. & Brodd, R. J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 104, 4245–4270 (2004).
    79. Wang, G., Zhang, L. & Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012).
    80. Zheng, J. P., Cygan, P. J. & Jow, T. R. Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. J. Electrochem. Soc. 142, 2699–2703 (1995).
    81. Zheng, J. P. & Jow, T. R. A New Charge Storage Mechanism for Electrochemical Capacitors. J. Electrochem. Soc. 142, L6–L8 (1995).
    82. Zheng, J. & Jow, T. r. A New Charge Storage Mechanism for Electrochemical Capacitors and Charge Storage Density Vs. Crystalline Structure of Metal Oxides. in Symposium W – Materials for Electrochemical Energy Storage and Conversion 393, (1995).
    83. Hu, C.-C., Chang, K.-H., Lin, M.-C. & Wu, Y.-T. Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors. Nano Lett. 6, 2690–2695 (2006).
    84. Li, H., Wang, R. & Cao, R. Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercapacitor. Microporous Mesoporous Mater. 111, 32–38 (2008).
    85. Zheng, J. et al. Genetic Disparity Between Morphologically Benign Cysts Contiguous to Ovarian Carcinomas and Solitary Cystadenomas. J. Natl. Cancer Inst. 87, 1146–1153 (1995).
    86. Srinivasan, V. & Weidner, J. W. Capacitance studies of cobalt oxide films formed via electrochemical precipitation. J. Power Sources 108, 15–20 (2002).
    87. Hu, C.-C., Chen, J.-C. & Chang, K.-H. Cathodic deposition of Ni(OH)2 and Co(OH)2 for asymmetric supercapacitors: Importance of the electrochemical reversibility of redox couples. J. Power Sources 221, 128–133 (2013).
    88. Choi, D., Blomgren, G. E. & Kumta, P. N. Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors. Adv. Mater. 18, 1178–1182 (2006).
    89. Chen, Z. et al. Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage. Adv. Funct. Mater. 19, 3420–3426 (2009).
    90. Hu, C.-C. & Tsou, T.-W. Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition. Electrochimica Acta 47, 3523–3532 (2002).
    91. Hu, C.-C. & Tsou, T.-W. Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem. Commun. 4, 105–109 (2002).
    92. Hu, C.-C., Wu, Y.-T. & Chang, K.-H. Low-Temperature Hydrothermal Synthesis of Mn3O4 and MnOOH Single Crystals: Determinant Influence of Oxidants. Chem. Mater. 20, 2890–2894 (2008).
    93. Toupin, M., Brousse, T. & Bélanger, D. Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chem. Mater. 16, 3184–3190 (2004).
    94. Murugan, A. V., Muraliganth, T. & Manthiram, A. Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Strorage. Chem. Mater. 21, 5004–5006 (2009).
    95. Dong, X.-C. et al. 3D Graphene–Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection. ACS Nano 6, 3206–3213 (2012).
    96. Yan, J. et al. Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density. Adv. Funct. Mater. 22, 2632–2641 (2012).
    97. Ning, G. et al. Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chem. Commun. 47, 5976–5978 (2011).
    98. Khomenko, V., Raymundo-Piñero, E. & Béguin, F. Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. J. Power Sources 153, 183–190 (2006).
    99. Gao, Q., Demarconnay, L., Raymundo-Piñero, E. & Béguin, F. Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ. Sci. 5, 9611–9617 (2012).
    100. Zheng, J. P. The Limitations of Energy Density of Battery/Double-Layer Capacitor Asymmetric Cells. J. Electrochem. Soc. 150, A484–A492 (2003).
    101. Kang, Y. J., Chung, H. & Kim, W. 1.8-V flexible supercapacitors with asymmetric configuration based on manganese oxide, carbon nanotubes, and a gel electrolyte. Synth. Met. 166, 40–44 (2013).
    102. Salunkhe, R. R. et al. Direct Growth of Cobalt Hydroxide Rods on Nickel Foam and Its Application for Energy Storage. Chem. – Eur. J. 20, 3084–3088 (2014).
    103. Ji, J. et al. Nanoporous Ni(OH)2 Thin Film on 3D Ultrathin-Graphite Foam for Asymmetric Supercapacitor. ACS Nano 7, 6237–6243 (2013).
    104. Wang, H. et al. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 4, 729–736 (2011).
    105. Lin, T.-W., Dai, C.-S. & Hung, K.-C. High Energy Density Asymmetric Supercapacitor Based on NiOOH/Ni3S2/3D Graphene and Fe3O4/Graphene Composite Electrodes. Sci. Rep. 4, 7274 (2014).
    106. Wang, R. & Yan, X. Superior asymmetric supercapacitor based on Ni-Co oxide nanosheets and carbon nanorods. Sci. Rep. 4, (2014).
    107. Shen, J., Yang, C., Li, X. & Wang, G. High-Performance Asymmetric Supercapacitor Based on Nanoarchitectured Polyaniline/Graphene/Carbon Nanotube and Activated Graphene Electrodes. ACS Appl. Mater. Interfaces 5, 8467–8476 (2013).
    108. Cao, J. et al. High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. J. Electroanal. Chem. 689, 201–206 (2013).
    109. Chen, Y.-C. et al. Novel Iron Oxyhydroxide Lepidocrocite Nanosheet as Ultrahigh Power Density Anode Material for Asymmetric Supercapacitors. Small 10, 3803–3810 (2014).

    QR CODE