簡易檢索 / 詳目顯示

研究生: 王福玲
Nathania Puspitasari
論文名稱: 重組疏水蛋白增強酶水解聚對苯二甲酸乙二酯(PET) 及 PETase 應用於 PET 材料之表面功能化應用
Enhanced Enzymatic Hydrolysis of Poly(ethylene terephthalate) (PET) by Recombinant Hydrophobins and PET Surface Functionalization via PETase Hydrolysis
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 李振綱
王勝仕
蔡伸隆
鄭光成
Kuan-Chen Cheng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 173
中文關鍵詞: 疏水蛋白PETase角質酶重组蛋白PET 回收纤维素结合域lysostaphin细菌纤维素一氧化氮抗菌
外文關鍵詞: Hydrophobin, PETase, cutinase, recombinant protein, PET recycling, cellulose binding domain, lysostaphin, bacterial cellulose, nitric oxide, antibacterial
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


COVER i DOCTORAL DISSERTATION ADVISOR RECOMENDATION ii QUALIFICATION FORM BY DOCTORAL DEGREE EXAMINATION COMMITTEE iii CHINESE ABSTRACT iv ENGLISH ABSTRACT vi ACKNOWLEDGEMENT viii TABLE OF CONTENTS ix LIST OF ABBREVIATIONS xiv LIST OF TABLES xvi LIST OF FIGURES xvii CHAPTER 1 INTRODUCTION 1 1.1. General introduction 2 1.2. Objectives 3 1.3. References 4 CHAPTER 2 LITERATURE REVIEW 7 2.1. Poly(ethylene terephthalate) (PET) 8 2.1.1 Properties and application 8 2.1.2 Synthesis process 8 2.1.3 PET disposal and recycling methods 9 2.2. Enzymatic hydrolysis of PET 10 2.2.1. Cutinase 13 2.2.2 Poly(ethylene terephthalate) hydrolase (PETase) 14 2.2.3. Potential chassis for PET hydrolases production 14 2.2.4. Challenges in enzymatic PET hydrolysis 15 2.2.5. Methods for improving the catalytic activity of PET hydrolases 15 2.3. Hydrophobins 17 2.4. Cellulose binding domain (CBD) 19 2.5. Bacterial cellulose (BC) 20 2.6. Lysostaphin 21 2.7. Nitric oxide (NO) 22 2.7.1. Antibacterial mechanism of NO 23 2.7.2. Methods for NO release detection 24 2.7.3. NONOate conjugated NO-releasing polymeric materials 24 2.8. References 26 CHAPTER 3 CLASS I HYDROPHOBINS PRETREATMENT ENHANCED ENZYMATIC HYDROLYSIS FOR MONOMERS RECYCLING OF WASTE PET 33 3.1. Introduction 34 3.2. Experimental section 36 3.2.1. Materials and chemicals 37 3.2.2. Plasmid, strains, and media 37 3.2.3. Cloning, expression, and purification of recombinant Cutinase 38 3.2.3.1. Production of Cutinase from wild-type Thermobifida fusca 38 3.2.3.2. Construction of recombinant plasmids 38 3.2.3.3. Preparation of E. coli competent cell 39 3.2.3.4. Transformation of competent E. coli 39 3.2.3.5. Colony PCR for the selection of positive clones 39 3.2.3.6. Agarose gel electrophoresis 40 3.2.3.7. Expression and purification of recombinant cutinases 40 3.2.3.8. SDS-PAGE analysis 41 3.2.4. Expression and purification of recombinant PETase 42 3.2.5. Activity assay of esterase enzyme 42 3.2.6. Production of class I hydrophobins 43 3.2.6.1. Isolation of native hydrophobin RolA 43 3.2.6.2. Expression and purification of recombinant hydrophobins 43 3.2.6.3. Characterization of class I hydrophobins 44 3.2.7. Enzymatic hydrolysis of PETs 44 3.2.8. HPLC analysis 45 3.2.9. SEM analysis 45 3.3. Results and discussions 45 3.3.1. Cloning, expression, and purification of recombinant cutinases 45 3.3.2. Expression and purification of recombinant PETase 48 3.3.3. Enzymatic PET hydrolysis by esterase enzymes 50 3.3.3.1. PETase hydrolysis 50 3.3.3.2. Cutinase hydrolysis 56 3.3.4. Production of class I hydrophobins 58 3.3.4.1. Native hydrophobin RolA 58 3.3.4.2. Recombinant hydrophobins 58 3.3.4.3. Characterization of the proteins 60 3.3.5. Effect of hydrophobins on PETase hydrolysis 62 3.4. References 67 CHAPTER 4 SOLUBLE EXPRESSION OF CLASS I HYDROPHOBIN BY FUSION WITH CELLULOSE BINDING DOMAIN AND ITS PURIFICATION USING BACTERIAL CELLULOSE 71 4.1. Introduction 72 4.2. Experimental section 73 4.2.1. Plasmids, strains, and media 74 4.2.2. Construction of recombinant CBD-HGFI 74 4.2.3. Expression and purification of fusion protein using IMAC 75 4.2.4. Production of bacterial cellulose 75 4.2.5. One-step purification and immobilization of CBD fusion on BC 76 4.2.6. Characterization of purified CBD fused HGFI 77 4.2.7. Enzymatic hydrolysis of PET 78 4.3. Results and discussions 79 4.3.1. Cloning, expression, and purification of recombinant CBD-HGFI 79 4.3.2. Simultaneous purification and immobilization of CBD fusion on BC 81 4.3.3. Properties analysis of purified CBD fused HGFI 86 4.3.4. Effect of hydrophobins pretreatment on PETase hydrolysis 91 4.4. References 92 CHAPTER 5 IMPROVED PET-HYDROLYZING ENZYMES ACTIVITY BY GENETIC FUSION TO CLASS I HYDROPHOBIN 96 5.1. Introduction 97 5.2. Experimental section 98 5.2.1. Materials and chemicals 98 5.2.2. Plasmids and strains 98 5.2.3. Construction of fusion proteins 99 5.2.4. Expression and purification of fusion proteins 100 5.2.5. Activity assay of esterase enzyme 100 5.2.6. Characterization of hydrophobin fusion proteins 100 5.2.7. Enzymatic hydrolysis of PET fiber 101 5.3. Results and discussions 101 5.3.1. Cloning, expression, and purification of recombinant CBD-HGFI-PETase 101 5.3.2. Cloning, expression, and purification of recombinant HGFI-Cut_2 103 5.3.3. Characterization of fusion proteins 106 5.3.4. Effect of hydrophobins fused enzymes on PET fiber hydrolysis 107 5.4. References 109 CHAPTER 6 SURFACE FUNCTIONALIZATION OF PETASE-TREATED PET FIBER WITH NITRIC OXIDE RELEASING FOR ANTIBACTERIAL AGENT 111 6.1. Introduction 112 6.2. Experimental section 114 6.2.1. Materials 114 6.2.2. Bacteria and enzyme 114 6.2.3. Preparation of PEI-grafted PET fiber 114 6.2.4. Preparation of NO-conjugated PET fiber 115 6.2.5. Characterization 115 6.2.6. Antibacterial test 116 6.3. Results and discussions 117 6.3.1. Preparation and characterization of PEI-grafted carboxylated PET fiber 117 6.3.2. NO conjugation to PEI-grafted PET fiber 121 6.3.3. Antibacterial activity of NO-conjugated PET fiber 123 6.4. References 125 CHAPTER 7 CONCLUSIONS AND FUTURE PERSPECTIVES 129 7.1. Conclusions 130 7.2. Future perspectives 131 APPENDIX 133 AUTOBIOGRAPHY 150

Ahmed, T., et al., Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research (international), 2018. 25(8): p. 7287-7298.
2. Geyer, R., J.R. Jambeck, and K.L. Law, Production, use, and fate of all plastics ever made. Science Advance, 2017. 3: p. 1-5.
3. PlasticEurope, Plastic-The Facts 2019. http:/www.plasticeurope.org (accessed on 12 January 2021).
4. Kawai, F., et al., Enzymatic Hydrophilization of Polyester Fabrics Using a Recombinant Cutinase Cut 190 and Their Surface Characterization. Journal of Fiber Science and Technology. 73(1): p. 8-18.
5. Kawai, F., T. Kawabata, and M. Oda, Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Applied Microbiology and Biotechnology, 2019. 103(11): p. 4253-4268.
6. A, G.K., et al., Review on plastic wastes in marine environment - Biodegradation and biotechnological solutions. Marine Pollution Bulletin, 2020. 150: p. 110733.
7. Castro, A.M.d., et al., High-fold improvement of assorted post-consumer poly(ethylene terephthalate) (PET) packages hydrolysis using Humicola insolens cutinase as a single biocatalyst. Process Biochemistry, 2019. 81: p. 85-91.
8. Koshti, R., L. Mehta, and N. Samarth, Biological Recycling of Polyethylene Terephthalate: A Mini-Review. Journal of Polymers and the Environment, 2018. 26(8): p. 3520-3529.
9. Awaja, F. and D. Pavel, Recycling of PET. European Polymer Journal, 2005. 41(7): p. 1453-1477.
10. Schiraldi, D.A., J. Scheirs, and T.E. Long, Modern polyesters: chemistry and technology of polyesters and copolyesters. 2003, New York: Wiley. p. 245-266.
11. Textile Exchange, Preferred fiber & materials market report 2019. http://store.textileexchange.org (accessed 23 July 2020).
12. Wang, X., et al., Preparation of a PET‐Hydrolyzing Lipase fromAspergillus oryzaeby the Addition of Bis(2‐hydroxyethyl) Terephthalate to the Culture Medium and Enzymatic Modification of PET Fabrics. Engineering in Life Sciences, 2008. 8(3): p. 268-276.
13. Kanelli, M., et al., Surface modification of poly(ethylene terephthalate) (PET) fibers by a cutinase from Fusarium oxysporum. Process Biochemistry, 2015. 50(11): p. 1885-1892.
14. Taniguchi, I., et al., Biodegradation of PET: Current Status and Application Aspects. ACS Catalysis, 2019. 9(5): p. 4089-4105.
15. Sinha, V., M.R. Patel, and J.V. Patel, Pet Waste Management by Chemical Recycling: A Review. Journal of Polymers and the Environment, 2008. 18(1): p. 8-25.
16. Al-Sabagh, A.M., et al., Greener routes for recycling of polyethylene terephthalate. Egyptian Journal of Petroleum, 2016. 25(1): p. 53-64.
17. Filho, A.R. and P.S. CurtiI, Chemical Kinetic Model and Thermodynamic Compensation Effect of Alkaline Hydrolysis of Waste Poly(ethylene terephthalate) in Nonaqueous Ethylene Glycol Solution. Industrial & Engineering Chemistry Research, 2006. 45: p. 7985-7996.
18. Oromiehie, A. and A. Mamizadeh, Recycling PET beverage bottles and improving properties. Polymer International, 2004. 53(6): p. 728-732.
19. Webb, H., et al., Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate). Polymers, 2012. 5(1): p. 1-18.
20. Muller, R.J., I. Kleeberg, and W.D. Deckwer, Biodegradation of polyesters containing aromatic constituents. Journal of Biotechnology 2001. 86: p. 87–95.
21. Zimmermann, W. and S. Billig, Enzymes for the biofunctionalization of poly(ethylene terephthalate). Biofunctionalization of polymer and their applications. 2010, Berlin: Springer. p. 97-120.
22. Wei, R. and W. Zimmermann, Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate. Microbial Biotechnology, 2017. 10(6): p. 1302-1307.
23. Heumann, S., et al., New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres. Journal of Biochemical and Biophysical Methods, 2006. 69(1-2): p. 89-99.
24. Vertommen, M.A., et al., Enzymatic surface modification of poly(ethylene terephthalate). Journal of Biotechnology, 2005. 120(4): p. 376-86.
25. Nyyssola, A., Which properties of cutinases are important for applications? Appl Microbiology and Biotechnology, 2015. 99(12): p. 4931-42.
26. Kawai, F., The Current State of Research on PET Hydrolyzing Enzymes Available for Biorecycling. Catalysts, 2021. 11(2).
27. Okada, M., Chemical syntheses of biodegradable polymers. Progress in Polymer Science, 2002. 27(1): p. 87-133.
28. Samak, N.A., et al., Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling. Environmental International, 2020. 145: p. 106144.
29. Furukawa, M., et al., Efficient Degradation of Poly(ethylene terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated using Mutagenesis and Additive-based Approaches. Scientific Reports, 2019. 9(1): p. 16038.
30. Ma, Y., et al., Enhanced Poly(ethylene terephthalate) Hydrolase Activity by Protein Engineering. Engineering, 2018. 4(6): p. 888-893.
31. Ribitsch, D., et al., Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins. Applied and Environmental Microbiology, 2015. 81(11): p. 3586-92.

Levchik, S.V. and E.D. Weil, A review on thermal decomposition and combustion of thermoplastic polyesters. Polymers for Advanced Technologies, 2004. 15(12): p. 691-700.
2. Bergeret, A., L. Ferry, and P. Ienny, Influence of the fibre/matrix interface on ageing mechanisms of glass fibre reinforced thermoplastic composites (PA-6,6, PET, PBT) in a hygrothermal environment. Polymer Degradation and Stability, 2009. 94(9): p. 1315-1324.
3. Kint, D. and Mun˜oz-Guerra, S., A review on the potential biodegrability of poly(ethylene terephthalate). Polymer International, 1999. 48: p.346-352.
4. Sinha, V. and J.V. Patel, PET waste management by chemical recycling: A review. Journal of Polymers and the Environment, 2008. 18(1): p. 8-25.
5. Schmidt, C., T. Krauth, and S. Wagner, Export of plastic debris by rivers into the sea. Environ Sci Technol, 2017. 51(21): p. 12246-12253.
6. Taniguchi, I., et al., Biodegradation of PET: current status and application aspects. ACS Catalysis, 2019. 9(5): p. 4089-4105.
7. Textile Exchange, Preferred fiber & materials market report 2019. http://store.textileexchange.org (accessed 23 July 2020).
8. Awaja, F. and D. Pavel, Recycling of PET. European Polymer Journal, 2005. 41(7): p. 1453-1477.
9. Webb, H., et al., Plastic degradation and its environmental implications with special reference to PET. Polymers, 2012. 5(1): p. 1-18.
10. Pudack, C., M. Stepanski, and P. Fässler, PET recycling – contributions of crystallization to sustainability. Chemie Ingenieur Technik, 2020. 92(4): p. 452-458.
11. Kawai, F., T. Kawabata, and M. Oda, Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl Microbiol Biotechnol, 2019. 103(11): p. 4253-4268.
12. Al-Sabagh, A.M., et al., Greener routes for recycling of polyethylene terephthalate. Egyptian Journal of Petroleum, 2016. 25(1): p. 53-64.
13. El-Hameed, Aminolysis of polyethylene terephthalate waste as corrosion inhibitor for carbon steel in HCl corrosive medium. Advances in Applied Science Research, 2011. 2(3): p. 483-499.
14. Grigore, M., Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling, 2017. 2(4).
15. Wei, R. and W. Zimmermann, Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb Biotechnol, 2017. 10(6): p. 1308-1322.
16. Ragaert, K., L. Delva, and K. Van Geem, Mechanical and chemical recycling of solid plastic waste. Waste Manag, 2017. 69: p. 24-58.
17. Yoshida, S., et al., A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 2016. 351(6278): p. 1196-1199.
18. Herrero A., E., et al., Enzymatic surface hydrolysis of PET: Effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules, 2011. 44(12): p. 4632-4640.
19. Kawai, F., et al., A novel Ca(2)(+)-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl Microbiol Biotechnol, 2014. 98(24): p. 10053-64.
20. Thumarat, U., et al., Biochemical and genetic analysis of a cutinase-type polyesterase from a thermophilic Thermobifida alba AHK119. Appl Microbiol Biotechnol, 2012. 95(2): p. 419-30.
21. Sulaiman, S., et al., Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol, 2012. 78(5): p. 1556-62.
22. Wei, R., Oeser, T., Then, J., Kuhn, N., Barth, J., Zimmermann, W., Functional characterization and structural modeling of synthetic polyester-degrading hydrolase from Thermomonospora curvata. AMB Express, 2014. 4: p. 44
23. Müller, R.-J., et al., Enzymatic degradation of poly(ethylene terephthalate): Rapid hydrolyse using a hydrolase fromT. fusca. Macromolecular Rapid Communications, 2005. 26(17): p. 1400-1405.
24. Hegde, K. and V.D. Veeranki, Production optimization and characterization of recombinant cutinases from Thermobifida fusca sp. NRRL B-8184. Appl Biochem Biotechnol, 2013. 170(3): p. 654-75.
25. Maurya, A., A. Bhattacharya, and S.K. Khare, Enzymatic remediation of polyethylene terephthalate (PET)-based polymers for effective management of plastic wastes: An overview. Front Bioeng Biotechnol, 2020. 8: p. 602325.
26. Egmond, M.R. and Vlieg, J, Fusarium solani pisi cutinase. Biochimie, 2000. 82: p. 1015-1021.
27. Dimarogona, M., et al., Structural and functional studies of a Fusarium oxysporum cutinase with polyethylene terephthalate modification potential. Biochim Biophys Acta, 2015. 1850(11): p. 2308-17.
28. Chandra Ojha, S., et al., Purification and characterization of the antibacterial peptidase lysostaphin from Staphylococcus simulans: Adverse influence of Zn(2+) on bacteriolytic activity. Protein Expr Purif, 2018. 151: p. 106-112.
29. Ho, B.T., T.K. Roberts, and S. Lucas, An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach. Crit Rev Biotechnol, 2018. 38(2): p. 308-320.
30. Weinberger, S., et al., Enzymatic degradation of Poly(ethylene 2,5-furanoate) powders and amorphous Films. Catalysts, 2017. 7(11).
31. Hu, X., et al., Enzymatic degradation of poly(butylene succinate) by cutinase cloned from Fusarium solani. Polymer Degradation and Stability, 2016. 134: p. 211-219.
32. Dutta, K., S. Sen, and V.D. Veeranki, Production, characterization and applications of microbial cutinases. Process Biochemistry, 2009. 44(2): p. 127-134.
33. Chen, S., et al., Cutinase: characteristics, preparation, and application. Biotechnol Adv, 2013. 31(8): p. 1754-67.
34. Han, X., et al., Structural insight into catalytic mechanism of PET hydrolase. Nat Commun, 2017. 8(1): p. 2106.
35. Austin, H.P., et al., Characterization and engineering of a plastic-degrading aromatic polyesterase. PNAS, 2018. 115(19): p. E4350-E4357.
36. Samak, N.A., et al., Development of a novel micro-aerobic cultivation sttrategy for high potential CotA Laccase production. Waste and Biomass Valorization, 2017. 9(3): p. 369-377.
37. Fecker, T., et al., Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase. Biophys J, 2018. 114(6): p. 1302-1312.
38. Tournier, V., et al., An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 2020. 580(7802): p. 216-219.
39. Barth, M., et al., A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol J, 2016. 11(8): p. 1082-7.
40. Rubingh, D.N, The influence of surfactants on enzyme activity. Current oppinion in Colloid & Interface Science, 1996. 1: p. 598-603.
41. Furukawa, M., et al., Acceleration of Enzymatic Degradation of Poly(ethylene terephthalate) by Surface Coating with Anionic Surfactants. ChemSusChem, 2018. 11(23): p. 4018-4025.
42. Chen, S., et al., Biochemical characterization of the cutinases from Thermobifida fusca. Journal of Molecular Catalysis B: Enzymatic, 2010. 63(3-4): p. 121-127.
43. Ribitsch, D., et al., Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins. Appl Environ Microbiol, 2015. 81(11): p. 3586-92.
44. Kawai, F., T. Kawabata, and M. Oda, Current State and Perspectives Related to the Polyethylene Terephthalate Hydrolases Available for Biorecycling. ACS Sustainable Chemistry & Engineering, 2020. 8(24): p. 8894-8908.
45. Ma, Y., et al., Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering. Engineering, 2018. 4(6): p. 888-893.
46. Bayry, J., et al., Hydrophobins--unique fungal proteins. PLoS Pathog, 2012. 8(5): p. e1002700.
47. Kulkarni, S., S. Nene, and K. Joshi, Production of Hydrophobins from fungi. Process Biochemistry, 2017. 61: p. 1-11.
48. Zhao, Z.X., et al., Self-assembled film of hydrophobins on gold surfaces and its application to electrochemical biosensing. Colloids Surf B Biointerfaces, 2009. 71(1): p. 102-6.
49. Wessels, J.G.H., Hydrophobins: Proteins that Change the Nature of the Fungal Surface, in Advances in Microbial Physiology Volume 38. 1996. p. 1-45.
50. Wosten, H.A. and K. Scholtmeijer, Applications of hydrophobins: current state and perspectives. Appl Microbiol Biotechnol, 2015. 99(4): p. 1587-97.
51. Linder, M.B., et al., Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev, 2005. 29(5): p. 877-96.
52. Wosten, H.A.B., HYDROPHOBINS: Multipurpose proteins. Annual Review of Microbiology, 2001. 55: p. 625-646.
53. Bolyard, M.G. and Sticklen, M.B., Expression of a modified dutch elm disease toxin in e coli. Molecular Plant-Microbe Interactions, 1992. 5(6): p. 520-524.
54. Wohlleben, W., et al., Recombinantly produced hydrophobins from fungal analogues as highly surface-active performance proteins. Eur Biophys J, 2010. 39(3): p. 457-68.
55. Rementeria, A., Lopez-Molina, N., Ludwig, A., and Garaizar, J. Genes and molecules involved in Aspergillus fumigatus virulence. Revista Iberoamerican de Micologia, 2005. 22: p. 1-23.
56. Dynesen, J. and Nielsen, J., Surface hydrophobicity of Aspergillus nidulans conidiospores and its role in pellet formation. Biotechnology Progress, 2003. 19: p. 1049-1052.
57. Takahashi, T., et al., The fungal hydrophobin RolA recruits polyesterase and laterally moves on hydrophobic surfaces. Mol Microbiol, 2005. 57(6): p. 1780-96.
58. Yu, L., et al., Protein HGFI from the edible mushroom Grifola frondosa is a novel 8 kDa class I hydrophobin that forms rodlets in compressed monolayers. Microbiology (Reading), 2008. 154(6): p. 1677-1685.
59. Sarlin, T., et al., Identification and characterization of gushing-active hydrophobins from Fusarium graminearum and related species. J Basic Microbiol, 2012. 52(2): p. 184-94.
60. Zapf, M.W., Theisen, S., Vogel, R.F., and Niessen, L., Cloning of wheat LTP1500 and two Fusarium culmorum hydrophobins in Saccharomyces cerevisiae and assessment of their gushing inducing potential in experimental wort fermentation. Journal of the Institute of Brewing, 2006. 112(3): p. 237-245.
61. Neuhof, T., et al., Direct identification of hydrophobins and their processing in Trichoderma using intact-cell MALDI-TOF MS. FEBS J, 2007. 274(3): p. 841-52.
62. Carrard, G., Koivula, A., Soderlund, H., and Beguin, P., Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(19): p. 10342-10347.
63. Kataeva, I.A., et al., Properties and mutation analysis of the CelK cellulose-binding domain from the Clostridium thermocellum cellulosome. J Bacteriol, 2001. 183(5): p. 1552-9.
64. Wan, W., et al., Expression of family 3 cellulose-binding module (CBM3) as an affinity tag for recombinant proteins in yeast. Appl Microbiol Biotechnol, 2011. 91(3): p. 789-98.
65. Terpe, K., Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol, 2003. 60(5): p. 523-33.
66. Chen, K.J., Y.T. Wu, and C.K. Lee, Cellulose binding domain fusion enhanced soluble expression of fructosyl peptide oxidase and its simultaneous purification and immobilization. Int J Biol Macromol, 2019. 133: p. 980-986.
67. Dai, G., et al., Nanofibrillated cellulose-enzyme assemblies for enhanced biotransformations with in situ cofactor regeneration. Appl Biochem Biotechnol, 2020. 191(4): p. 1369-1383.
68. Huang, Y., et al., Recent advances in bacterial cellulose. Cellulose, 2013. 21(1): p. 1-30.
69. Tabuchi, M., Nanobiotech versus synthetic nanotech. Nature Biotechnology, 2007. 25(4): p. 389.
70. Jonas, R. and Farah, L.F., Production and application of microbial cellulose. Polymer degradation and stability, 1998. 59: p. 101-106.
71. Mori, R., et al., Increased antibiotic release from a bone cement containing bacterial cellulose. Clin Orthop Relat Res, 2011. 469(2): p. 600-6.
72. Recouvreux, D.O.S., et al., Novel three-dimensional cocoon-like hydrogels for soft tissue regeneration. Materials Science and Engineering: C, 2011. 31(2): p. 151-157.
73. Sukhithasri, V., et al., Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiol Res, 2013. 168(7): p. 396-406.
74. Mitkowski, P., et al., Structural bases of peptidoglycan recognition by lysostaphin SH3b domain. Sci Rep, 2019. 9(1): p. 5965.
75. Sabala, I., et al., Crystal structure of the antimicrobial peptidase lysostaphin from Staphylococcus simulans. FEBS J, 2014. 281(18): p. 4112-22.
76. Jayakumar, J., et al., Therapeutic applications of lysostaphin against Staphylococcus aureus. J Appl Microbiol, 2020.
77. Bolanos, J.P., Almcida, A., Stewart, V., Heales, S.J.R., Nitric oxide-mediated mitochondrial damage in the brain: Mechanism and implications for neurodegenerative diseases. Journal of Neurochemistry, 1997. 68: p. 222-2240.
78. Ramadass, S.K., et al., Type I collagen peptides and nitric oxide releasing electrospun silk fibroin scaffold: A multifunctional approach for the treatment of ischemic chronic wounds. Colloids Surf B Biointerfaces, 2019. 175: p. 636-643.
79. Cheng, J., et al., Nitric oxide (NO)-releasing macromolecules: Rational design and biomedical applications. Front Chem, 2019. 7: p. 530.
80. Carpenter, A.W. and M.H. Schoenfisch, Nitric oxide release: part II. Therapeutic applications. Chem Soc Rev, 2012. 41(10): p. 3742-52.
81. Xu, J., Xu, X., and Verstraete, W. Adaptation of E. coli cell method for micro-scale nitrate. Journal of Microbiological Methods, 2000. 41: p. 23-33.
82. Drago, R.S. and Paulik, F.E. The Reaction of Nitrogen (II) Oxide with Diethylamine. Journal of the American Chemical Society, 82: p. 96-98.
83. Rong, F., et al., Nitric oxide-releasing polymeric materials for antimicrobial applications: A review. Antioxidants (Basel), 2019. 8(11).
84. Kapadia, M.R., et al., Nitric oxide and nanotechnology: a novel approach to inhibit neointimal hyperplasia. J Vasc Surg, 2008. 47(1): p. 173-82.
85. Zhu, H., B. Ka, and F. Murad, Nitric oxide accelerates the recovery from burn wounds. World J Surg, 2007. 31(4): p. 624-31.
86. Nablo, B.J., et al., Inhibition of implant-associated infections via nitric oxide release. Biomaterials, 2005. 26(34): p. 6984-90.
87. Engelsman, A.F., et al., Antimicrobial effects of an NO-releasing poly(ethylene vinylacetate) coating on soft-tissue implants in vitro and in a murine model. Acta Biomaterialia, 2009. 5(6): p. 1905-1910.
88. Weller, R.B., Nitric oxide-containing nanoparticles as an antimicrobial agent and enhancer of wound healing. J Invest Dermatol, 2009. 129(10): p. 2335-7.

Sooksai, T., et al., Production of cutinase from Fusarium falciforme and its application for hydrophilicity improvement of polyethylene terephthalate fabric. 3 Biotech, 2019. 9(11): p. 389.
2. Herrero Acero, E., et al., Enzymatic Surface Hydrolysis of PET: Effect of Structural Diversity on Kinetic Properties of Cutinases from Thermobifida. Macromolecules, 2011. 44(12): p. 4632-4640.
3. Carniel, A., et al., Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochemistry, 2017. 59: p. 84-90.
4. Silva, C.M., et al., Cutinase?A new tool for biomodification of synthetic fibers. Journal of Polymer Science Part A: Polymer Chemistry, 2005. 43(11): p. 2448-2450.
5. Müller, R.-J., et al., Enzymatic Degradation of Poly(ethylene terephthalate): Rapid Hydrolyse using a Hydrolase fromT. fusca. Macromolecular Rapid Communications, 2005. 26(17): p. 1400-1405.
6. Yoshida, S., et al., A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 2016. 351(6278): p. 1196-1199.
7. Chen, Z., et al., Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Science of the Total Environment, 2020. 709: p. 136138.
8. Han, X., et al., Structural insight into catalytic mechanism of PET hydrolase. Nature Communications, 2017. 8(1): p. 2106.
9. Fecker, T., et al., Active Site Flexibility as a Hallmark for Efficient PET Degradation by I. sakaiensis PETase. Biophysical Journal, 2018. 114(6): p. 1302-1312.
10. Austin, H.P., et al., Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences of the USA, 2018. 115(19): p. E4350-E4357.
11. Ma, Y., et al., Enhanced Poly(ethylene terephthalate) Hydrolase Activity by Protein Engineering. Engineering, 2018. 4(6): p. 888-893.
12. Kawai, F., T. Kawabata, and M. Oda, Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Applied Microbiology and Biotechnology, 2019. 103(11): p. 4253-4268.
13. Ronkvist, Å.M., et al., Cutinase-Catalyzed Hydrolysis of Poly(ethylene terephthalate). Macromolecules, 2009. 42(14): p. 5128-5138.
14. Jaiswal, S., B. Sharma, and P. Shukla, Integrated approaches in microbial degradation of plastics. Environmental Technology & Innovation, 2020. 17.
15. Furukawa, M., et al., Efficient Degradation of Poly(ethylene terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated using Mutagenesis and Additive-based Approaches. Scientific Reports, 2019. 9(1): p. 16038.
16. Ribitsch, D., et al., Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins. Applied and Environmental Microbiology, 2015. 81(11): p. 3586-92.
17. Wang, Z., et al., Expression and characterization of a Grifola frondosa hydrophobin in Pichia pastoris. Protein Expression and Purification, 2010. 72(1): p. 19-25.
18. Wang, X., et al., Design of antibacterial biointerfaces by surface modification of poly (epsilon-caprolactone) with fusion protein containing hydrophobin and PA-1. Colloids and Surfaces B: Biointerfaces, 2017. 151: p. 255-263.
19. Song, D., et al., High-yield fermentation and a novel heat-precipitation purification method for hydrophobin HGFI from Grifola frondosa in Pichia pastoris. Protein Expression and Purification, 2016. 128: p. 22-8.
20. Wang, Z., et al., Prokaryotic expression, purification, and polyclonal antibody production of a hydrophobin from Grifola frondosa. Acta Biochimica et Biophysica Sinica (Shanghai), 2010. 42(6): p. 388-95.
21. Niu, B., et al., Investigation of the relationship between the rodlet formation and Cys3-Cys4 loop of the HGFI hydrophobin. Colloids and Surfaces B: Biointerfaces, 2017. 150: p. 344-351.
22. Li, W., et al., Identification properties of a recombinant class I hydrophobin rHGFI. International Journal of Biological Macromolecules, 2015. 72: p. 658-63.
23. Longobardi, S., et al., Environmental conditions modulate the switch among different states of the hydrophobin Vmh2 from Pleurotus ostreatus. Biomacromolecules, 2012. 13(3): p. 743-50.

1. Berger, B.W. and N.D. Sallada, Hydrophobins: multifunctional biosurfactants for interface engineering. Journal of Biological Engineering, 2019. 13: p. 10.
2. Winandy, L., et al., Comparative analysis of surface coating properties of five hydrophobins from Aspergillus nidulans and Trichoderma reseei. Scientific Reports, 2018. 8(1): p. 12033.
3. Wosten, H.A. and K. Scholtmeijer, Applications of hydrophobins: current state and perspectives. Applied Microbiology and Biotechnology, 2015. 99(4): p. 1587-97.
4. Cicatiello, P., et al., Self-assembly of two hydrophobins from marine fungi affected by interaction with surfaces. Biotechnology and Bioengineering, 2017. 114(10): p. 2173-2186.
5. Gandier, J.A., et al., Characterization of a Basidiomycota hydrophobin reveals the structural basis for a high-similarity Class I subdivision. Scientific Reports, 2017. 7: p. 45863.
6. Quarantin, A., et al., Different Hydrophobins of Fusarium graminearum are involved in hyphal growth, attachment, water-air interface penetration and plant infection. Frontiers in Microbiology, 2019. 10: p. 751.
7. Macindoe, I., et al., Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Proceedings of the National Academy of Sciences USA, 2012. 109(14): p. E804-11.
8. Cheng, Y., et al., Soluble hydrophobin mutants produced in Escherichia coli can self-assemble at various interfaces. Journal of Colloid and Interface Science, 2020. 573: p. 384-395.
9. Yu, L., et al., Protein HGFI from the edible mushroom Grifola frondosa is a novel 8 kDa class I hydrophobin that forms rodlets in compressed monolayers. Microbiology (Reading), 2008. 154(Pt 6): p. 1677-1685.
10. Kirkland, B.H. and N.O. Keyhani, Expression and purification of a functionally active class I fungal hydrophobin from the entomopathogenic fungus Beauveria bassiana in E. coli. Journal of Industrial Microbiology and Biotechnology, 2011. 38(2): p. 327-35.
11. Boeuf, S., et al., Engineering hydrophobin DewA to generate surfaces that enhance adhesion of human but not bacterial cells. Acta Biomaterialia, 2012. 8(3): p. 1037-47.
12. Yang, Z., et al., Highly efficient production of soluble proteins from insoluble inclusion bodies by a two-step-denaturing and refolding method. PLoS One, 2011. 6(7): p. e22981.
13. Oliveira, C., et al., Recombinant CBM-fusion technology - Applications overview. Biotechnology Advances, 2015. 33(3-4): p. 358-69.
14. Wan, W., et al., Expression of family 3 cellulose-binding module (CBM3) as an affinity tag for recombinant proteins in yeast. Applied Microbiology and Biotechnology, 2011. 91(3): p. 789-98.
15. Yeom, S.J., et al., Controlled aggregation and increased stability of beta-Glucuronidase by cellulose binding domain fusion. PLoS One, 2017. 12(1): p. e0170398.
16. Valo, H., et al., Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices--enhanced stability and release. Journal of Controlled Release, 2011. 156(3): p. 390-7.
17. Costa, S., et al., Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Frontiers in Microbiology, 2014. 5: p. 63.
18. Xu, Y. and F.C. Foong, Characterization of a cellulose binding domain from Clostridium cellulovorans endoglucanase-xylanase D and its use as a fusion partner for soluble protein expression in Escherichia coli. Journal of Biotechnology, 2008. 135(4): p. 319-25.
19. Chen, K.J., Y.T. Wu, and C.K. Lee, Cellulose binding domain fusion enhanced soluble expression of fructosyl peptide oxidase and its simultaneous purification and immobilization. International Journal of Biological Macromolecular, 2019. 133: p. 980-986.
20. Lo, V., Hydrophobins: Biological application of fungal proteins, in Department of Pharmacology. 2018, University of Sydney: Australia. p. 188.
21. Francis, D.M. and R. Page, Strategies to optimize protein expression in E. coli. Current Protocol in Protein Science, 2010. Chapter 5: p. Unit 5 24 1-29.
22. Sorensen, H.P. and K.K. Mortensen, Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories, 2005. 4(1): p. 1.
23. Portela, R., et al., Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microbial Biotechnology, 2019. 12(4): p. 586-610.
24. Sulaeva, I., et al., Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnology Advances, 2015. 33(8): p. 1547-1571.
25. Lo, V.C., et al., Fungal hydrophobin proteins produce self-assembling protein films with diverse structure and chemical stability. Nanomaterials (Basel), 2014. 4(3): p. 827-843.
26. Biancalana, M. and S. Koide, Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta, 2010. 1804(7): p. 1405-12.
27. Morris, V.K., et al., Recruitment of class I hydrophobins to the air:water interface initiates a multi-step process of functional amyloid formation. Journal of Biological Chemistry, 2011. 286(18): p. 15955-63.
28. Dai, L., et al., Enhancing PET hydrolytic enzyme activity by fusion of the cellulose-binding domain of cellobiohydrolase I from Trichoderma reesei. Journal of Biotechnology, 2021. 334: p. 47-50.

1. Samak, N.A., et al., Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling. Environmental International, 2020. 145: p. 106144.
2. Furukawa, M., et al., Efficient Degradation of Poly(ethylene terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated using Mutagenesis and Additive-based Approaches. Scientific Reports, 2019. 9(1): p. 16038.
3. Ricca, E., B. Brucher, and J.H. Schrittwieser, Multi-Enzymatic Cascade Reactions: Overview and Perspectives. Advanced Synthesis & Catalysis, 2011. 353(13): p. 2239-2262.
4. Schoffelen, S. and J.C. van Hest, Chemical approaches for the construction of multi-enzyme reaction systems. Curr Opin Struct Biol, 2013. 23(4): p. 613-21.
5. Sharshar, M.M., et al., Enhanced growth-driven stepwise inducible expression system development in haloalkaliphilic desulfurizing Thioalkalivibrio versutus. Bioresource Technology, 2019. 288: p. 121486.
6. Kawai, F., T. Kawabata, and M. Oda, Current State and Perspectives Related to the Polyethylene Terephthalate Hydrolases Available for Biorecycling. ACS Sustainable Chemistry & Engineering, 2020. 8(24): p. 8894-8908.
7. Dai, L., et al., Enhancing PET hydrolytic enzyme activity by fusion of the cellulose-binding domain of cellobiohydrolase I from Trichoderma reesei. Journal of Biotechnology, 2021. 334: p. 47-50.
8. Ribitsch, D., et al., Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins. Applied and Environmental Microbiology, 2015. 81(11): p. 3586-92.
9. Linder, M.B., et al., Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiology Reviews, 2005. 29(5): p. 877-96.
10. Kulkarni, S., S. Nene, and K. Joshi, Production of Hydrophobins from fungi. Process Biochemistry, 2017. 61: p. 1-11.
11. Gruner, M.S., et al., Self-assembly of class II hydrophobins on polar surfaces. Langmuir, 2012. 28(9): p. 4293-300.
12. Paananen, A., et al., Quantifying biomolecular hydrophobicity: Single molecule force spectroscopy of class II hydrophobins. Journal of Biological Chemistry, 2021: p. 100728.
13. Austin, H.P., et al., Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceeding of the National Academy of Sciences USA, 2018. 115(19): p. E4350-E4357.
14. Joo, S., et al., Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nature Communications, 2018. 9(1): p. 382.

1. Foxman, B., The epidemiology of urinary tract infection. Nature Reviews. Urology, 2010. 7(12): p. 653-60.
2. Kaper, J.B., J.P. Nataro, and H.L. Mobley, Pathogenic Escherichia coli. Nature Reviews. Microbiology, 2004. 2(2): p. 123-40.
3. Flores-Mireles, A.L., et al., Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature Reviews. Microbiology, 2015. 13(5): p. 269-84.
4. Tong, S.Y., et al., Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 2015. 28(3): p. 603-61.
5. Ansari, S., et al., Risk factors assessment for nasal colonization of Staphylococcus aureus and its methicillin resistant strains among pre-clinical medical students of Nepal. BMC Research Notes, 2016. 9: p. 214.
6. Naber, C.K., Staphylococcus aureus bacteremia: epidemiology, pathophysiology, and management strategies. Clinical Infectious Diseases, 2009. 48 Suppl 4: p. S231-7.
7. Kaur, D.C. and S.S. Chate, Study of Antibiotic Resistance Pattern in Methicillin Resistant Staphylococcus Aureus with Special Reference to Newer Antibiotic. Journal of Global Infectious Diseases, 2015. 7(2): p. 78-84.
8. Guo, Y., et al., Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 2020. 10: p. 107.
9. Olivares, J., et al., The intrinsic resistome of bacterial pathogens. Frontiers in Microbiology, 2013. 4: p. 103.
10. Magill, S.S., et al., Multistate point-prevalence survey of health care-associated infections. New England Journal of Medicine, 2014. 370(13): p. 1198-208.
11. Eiff, C.V., et al., Infections Associated with Medical Devices. Drugs, 2005. 65(2): p. 179-214.
12. Francolini, I., et al., Antifouling and antimicrobial biomaterials: an overview. Acta Pathologica, Microbiologica, et Immunologica Scandinavica (APMIS), 2017. 125(4): p. 392-417.
13. Heckmann, T.S. and J.D. Schiffman, Spatially Organized Nanopillar Arrays Dissimilarly Affect the Antifouling and Antibacterial Activities of Escherichia coli and Staphylococcus aureus. ACS Applied Nano Materials, 2019. 3(2): p. 977-984.
14. Arif, Z., et al., Development of antimicrobial and antifouling nanocomposite membranes by a phase inversion technique. Journal of Polymer Engineering, 2019. 39(6): p. 545-555.
15. Soon, Z.Y., et al., Zinc Pyrithione (ZnPT) as an Antifouling Biocide in the Marine Environment—a Literature Review of Its Toxicity, Environmental Fates, and Analytical Methods. Water, Air, & Soil Pollution, 2019. 230(12).
16. Kohanski, M.A., D.J. Dwyer, and J.J. Collins, How antibiotics kill bacteria: from targets to networks. Nature Reviews. Microbiology, 2010. 8(6): p. 423-35.
17. Punjataewakupt, A., S. Napavichayanun, and P. Aramwit, The downside of antimicrobial agents for wound healing. European Journal of Clinical Microbiology and Infectious Diseases, 2019. 38(1): p. 39-54.
18. Choudhari, S.K., et al., Nitric oxide and cancer: a review. World Journal of Surgical Oncology, 2013. 11(1): p. 118.
19. Jen, M.C., et al., Polymer-Based Nitric Oxide Therapies: Recent Insights for Biomedical Applications. Advanced Functional Materials, 2012. 22(2): p. 239-260.
20. Lu, Y., et al., Nitric oxide-releasing amphiphilic poly(amidoamine) (PAMAM) dendrimers as antibacterial agents. Biomacromolecules, 2013. 14(10): p. 3589-98.
21. Bagheri, A., et al., Surface functionalization of upconversion nanoparticles using visible light-mediated polymerization. Polymer, 2018. 151: p. 6-14.
22. Duong, H.T., et al., Nanoparticle (star polymer) delivery of nitric oxide effectively negates Pseudomonas aeruginosa biofilm formation. Biomacromolecules, 2014. 15(7): p. 2583-9.
23. Wold, K.A., et al., Fabrication of biodegradable polymeric nanofibers with covalently attached NO donors. ACS Applied Materials & Interfaces, 2012. 4(6): p. 3022-30.
24. Jafari, S., et al., Electrospun polyethylene terephthalate (PET) nanofibrous conduit for biomedical application. Polymers for Advanced Technologies, 2019. 31(2): p. 284-296.
25. Fleming, G., et al., Nitric Oxide Releasing Polymeric Coatings for the Prevention of Biofilm Formation. Polymers (Basel), 2017. 9(11).
26. Ho, K.K.K., et al., Facile solvent-free fabrication of nitric oxide (NO)-releasing coatings for prevention of biofilm formation. Chemical Communications (Camb), 2017. 53(48): p. 6488-6491.
27. Frost, M.C., M.M. Reynolds, and M.E. Meyerhoff, Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices. Biomaterials, 2005. 26(14): p. 1685-93.
28. Hibbard, H.A.J. and M.M. Reynolds, Enzyme-Activated Nitric Oxide-Releasing Composite Material for Antibacterial Activity Against Escherichia coli. ACS Applied Bio Materials, 2020. 3(8): p. 5367-5374.
29. Sadrearhami, Z., et al., Antibiofilm Nitric Oxide-Releasing Polydopamine Coatings. ACS Applied Materials & Interfaces, 2019. 11(7): p. 7320-7329.
30. Baker, P.J., et al., Identification and comparison of cutinases for synthetic polyester degradation. Applied Microbiology and Biotechnology, 2012. 93(1): p. 229-40.
31. Koniev, O. and A. Wagner, Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chemical Society Reviews, 2015. 44(15): p. 5495-551.
32. Liu, Y., et al., Synthesis and characterization of silica nanoparticles functionalized with multiple TEMPO groups and investigation on their oxidation activity. Polymer Chemistry, 2015. 6(43): p. 7514-7523.
33. Soto-Cantu, E., et al., Synthesis and rapid characterization of amine-functionalized silica. Langmuir, 2012. 28(13): p. 5562-9.
34. Samak, N.A., et al., Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling. Environmental International, 2020. 145: p. 106144.
35. Nurhasni, H., et al., Nitric oxide-releasing poly(lactic-co-glycolic acid)-polyethylenimine nanoparticles for prolonged nitric oxide release, antibacterial efficacy, and in vivo wound healing activity. International Journal of Nanomedicine, 2015. 10: p. 3065-80.
36. Gauthama, B.U., et al., Nitrate/Nitrite determination in water and soil samples accompanied by in situ azo dye formation and its removal by superabsorbent cellulose hydrogel. SN Applied Sciences, 2020. 2(7).
37. Khalil, H., et al., Synergy between polyethylenimine and different families of antibiotics against a resistant clinical isolate of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2008. 52(5): p. 1635-41.
38. Pacher, P., J.S. Beckman, and L. Liaudet, Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, 2007. 87(1): p. 315-424.

無法下載圖示 全文公開日期 2026/08/12 (校內網路)
全文公開日期 2026/08/12 (校外網路)
全文公開日期 2026/08/12 (國家圖書館:臺灣博碩士論文系統)
QR CODE