簡易檢索 / 詳目顯示

研究生: 王玠龍
Jie-Long Wang
論文名稱: 常壓電漿噴射束於沃斯田體系不鏽鋼電漿輔助氮化之研究
Plasma-Assisted Nitriding of Austenitic Stainless Steel by Atmospheric Pressure Plasma Jet
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 邱六合
Liu-ho Chiu
張銀祐
Yin-Yu Chang
林長華
Chang-Hua Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 137
中文關鍵詞: 常壓電漿噴射束電漿氮化快速氮化AISI 304不鏽鋼氮化沃斯田體系不銹鋼氮化
外文關鍵詞: Atmospheric pressure plasma jet, Plasma Nitriding, AISI 304 stainless steel nitriding, Austenitic stainless steel nitriding, Rapid nitriding
相關次數: 點閱:231下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
AISI 304 不鏽鋼目前廣泛運用於各種領域中,包括汽車、食品、醫療器具及民生用具等。儘管不鏽鋼因著表面之氧化鉻而有著良好的抗腐蝕性,但其表面硬度並不高,因此需要經過硬化處理。表面滲氮處理為化學表面硬化技術之領域,藉由表面滲入氮原子而改變材料之機械性質,不僅提升硬度、磨耗及抗衝擊性能,更能增加材料於高負載、惡劣環境下使用之壽命。本實驗利用常壓電漿噴射束針對AISI 304不鏽鋼進行表面滲氮處理,以便獲得良好硬度之表面。相較於傳統電漿滲氮製程,常壓電漿滲氮大幅降低氮化過程所耗費之時間,縮短整道製程的複雜度,同時具備綠色製程之環保特性。
本實驗利用氮氣、氫氣混合氣作為工作氣體,並且固定電漿之瓦數、頻率、距離等條件,僅僅改變處理時間為3、5、7、9、11分鐘,用以研究不同時間條件下所獲得的相對應研究結果。本實驗利用維克氏硬度計測量表面及剖面之硬度,並且藉由X光繞射儀器檢測氮化後之試片成份。隨後利用OES光譜儀搜集電漿於氮化過程中所產出之物種及自由基,再以場發射掃描電子顯微鏡(FE-SEM)及光學顯微鏡(OM)觀察表面形貌及橫截面之組織結構,並利用EDS-Line scan及Mapping針對剖面進行掃描,以便觀察其中之組成元素,後續利用電化學分析儀探討經氮化處理後之抗腐蝕性能。由分析結果可得知,AISI 304不鏽鋼經過常壓電漿氮化處理後之表面硬度數值成功提升,由原本192 HV0.1之原始硬度於經過3至11 min之常壓電漿處理後分別提升至937 HV0.1、972 HV0.1、1156 HV0.1、1192 HV0.1與1195 HV0.1,經由觀察其剖面金相組織可得知其深度會隨著處理時間拉長而增加。另於XRD分析中可觀測到γN、Fe4N、Fe3N、CrN、α等峰值之生成,但於抗腐蝕性能則因著CrN之析出而導致整體抗蝕性下降。從OES光譜中,我們推測常壓電漿氮化機制主要還是以NH基為成功氮化關鍵因素,因此由研究之結果可得知常壓電漿可成功針對沃斯田體系不鏽鋼進行氮化處理。


AISI 304 Stainless Steel is widely used both industrially and non-industrially. Although composed of highly protective chromium oxide and thus possessing high corrosion resistance, Austenitic type stainless steel lacks surface hardness and must therefore be nitrided. The nitriding treatment could significantly increase not only surface hardness but also impact resistance, which improving the durability of service life when used in harsh environments or under conditions of harsh resistance. In this research, we proposed using the heat treatment process afforded by an Atmospheric Pressure Plasma Jet (APPJ) to modify on AISI 304 Stainless Steel to make it harder. In comparison to the conventional nitriding process, this process simultaneously minimizes our processing time while maximizing overall production line efficiency. The N2/H2 is utilized as a working gas in our experiment. With respect to parameters, there is but variable processing time (3/5/7/9/11 minutes), which are used to investigate the relationship between different processing times and corresponding results. Subsequently, these treated samples are analyzed with various instruments.
We utilize Vickers hardness tester to measure the surface hardening and Cross-section hardness. The X-ray Diffractometer (XRD) was used to observe the crystalline structure on the treated sample surface. The plasma species and radicals generated by N2/H2 working gases in an APPJ system are detected by using Optical Emission Spectroscopy (OES). Cross-section morphologies and constituent elements of nitriding layers are observed by Field Emission Scanning Electron Microscopy (FE-SEM), Optical Microscope (OM), elemental mapping, and EDS line-scan. Finally, surface impact resistance is detected using the Dynamic Fatigue Testing Machine.
The results of our research indicate that the surface hardness of AISI Stainless Steel was successfully changed into higher value. As such, the depth of the nitriding layer rose gradually with the increasing time; nevertheless, the corrosion resistance decreased significantly due to the formation of the CrN compound, which precipitated under a high processing temperature. We found that γN, Fe4N, Fe3N, CrN, α generated from the treated sample. From OES observation, we conclude that NH radical plays the definitive role in both controlling the hardening mechanism and in determining the formation of the nitriding layer.

目錄 第一章 緒論 1 1.1 前言 1 1.2 研究背景與目的 2 第二章 文獻回顧 3 2.1 AISI 304不鏽鋼 3 2.1.1 AISI不鏽鋼基本介紹 3 2.1.2 合金元素於鋼材之影響 5 2.2 表面硬化處理 8 2.2.1 化學表面硬化技術 9 2.2.2 物理表面硬化技術 10 2.3 滲氮處理 12 2.3.1 氮化法介紹 12 2.3.2 滲氮前處理 13 2.3.3 合金元素對滲氮之影響 15 2.3.4 氮化層之組織與性質 18 2.3.5 滲氮機制 21 2.4 電漿介紹 25 2.4.1 電漿基本介紹 25 2.4.2 電漿原理及機制 26 2.4.3 熱平衡、非熱平衡電漿 29 2.4.4 電漿之生成分類 31 2.4.5 崩潰電壓 34 2.4.6 常壓電漿放電方式 35 2.4.7 常壓電漿之應用 39 第三章 實驗流程與設備 46 3.1 實驗設計 46 3.2 實驗材料 48 3.3 實驗步驟 49 3.3.1 不鏽鋼滲氮前處理 49 3.3.2 常壓電漿噴射束滲氮處理流程 49 3.4 實驗設備 51 3.4.1 常壓電漿噴射束(APPJ)原理介紹 51 3.5 材料分析儀器 53 3.5.1 光學放射光譜儀(OES) 53 3.5.2 維克氏硬度機(Vickers Hardness Test) 55 3.5.3 X光繞射儀(XRD) 56 3.5.4 場發射掃描式電子顯微鏡(FE-SEM) 58 3.5.5 電化學測試(Electrochemical Test) 60 3.5.6 光學顯微鏡(OM) 62 3.5.7 動態衝擊疲勞試驗機(Cyclic Loading Device) 63 第四章 結果與討論 64 4.1 溫度分析 64 4.2 光學放射光譜儀分析 66 4.3 表面硬度分析 68 4.4 剖面硬度分析 72 4.5 EDS line scan分析 75 4.6 Mapping分析 79 4.7 X光繞射分析 85 4.8 光學顯微鏡(OM) 90 4.9 FE-SEM 93 4.10 EDS 分析 97 4.11 電化學動電位極化曲線分析 99 4.12 動態衝擊疲勞試驗分析 101 4.13 常壓電漿滲氮機制探討 108 第五章 結論 111 第六章 未來展望 113 第七章 參考文獻 114

[1] https://sdg.iisd.org.
[2] http://www.united-steel.com/newsshow/Stainless-steel-pipe-application.html.
[3] https://www.imetllc.com/training-article/stainless-steel-corrosion-resistant/.
[4] 吳惟、陳家吉,「機械材料(二)」,東大出版社,2011,p. 29-31。
[5] 廖耀宇,「技師期刊-認識不鏽鋼」,第61期,p. 121-125。
[6] http://web.nchu.edu.tw/~weite/chii/submaster/stainless%20steel.pdf.
[7] 張正文,「不鏽鋼鋼種性質及其應用」,燁聯鋼鐵研發部製程技術處,2010。
[8] https://www.dm-consultancy.com/TR/dosya/1-59/h/aisi-340-info.pdf.
[9] 陳奐晞,「金屬粉末射出成型 SKD11 元件機械性質分析」,東南科技大學機電整合研究所,碩士論文,p. 13,2012。
[10] 材料手冊編審委員會,「鋼鐵材料手冊」,中國材料科學學會, 1998。
[11] https://www.westyorkssteel.com/technical-information/elementsin-steel/.
[12] 洪毓挺,「以電漿滲氮鋼材模具模造玻璃微透鏡陣列之相關製程研究」,淡江大學機械工程系,碩士論文,p. 18~20,2011。
[13] D. V. Edmonds, “Quenching and partitioning martensite-A novel steel treatment,” Materials Science and Engineering: A, vol. 438–440, p. 25-34, 2006.
[14] S. Miyazaki, H. Y. Kim, H. Hosoda, “Development and characterization of Ni-free Ti-base shape memory and superelastic alloys,” Materials Science and Engineering: A, vol. 438–440, p. 18-24, 2006.
[15] 熱處理編輯委員會,「熱處理」,高立圖書有限公司,2006。
[16] 余煥騰,「金屬熱處理學」,六合出版社,1998.
[17] http://www.pmai.tn.edu.tw/df_ufiles/df_pics/06表面處理.pdf.
[18] 金重勳,「熱處理」,台灣復文興業股份有限公司,1998。
[19] Friction Technologies, http://www.nitridingprocess.com/.
[20] 機械工程手冊編輯委員會,「熱處理與表面:精密製造/機械工程手冊」,五南圖書出版股份有限公司,2005。
[21] 呂璞石、黃振賢,「金屬材料」,文京圖書有限公司,1990。
[22] 黃稚惠,「氮化處理對SKH51高速鋼機械性質與微奈米級顯微結構影響之研究」,南臺科技大學機械工程系,碩士論文,p. 22-24,2014。
[23] Bernal, “Investigation on Nitriding with Emphasis in Plasma Nitriding Process, Current Technology and Equipment: Review Article,” Royal Institute of Technology Materials Processing, p. 12, 2006.
[24] F. Z. Benlahreche, and E. Nouicer, “Improvement of Surface Properties of Low Carbon Steel by Nitriding Treatment,” Special Issue of the 6th International Congress & Exhibition, vol. 131, p. 20-23, 2016.
[25] N. D. Nam, N. A. Xuan, N. V. Bach, L. T. Nhung, “Control Gas Nitriding Process: A Review Journal of Mechanical Engineering Research & Developments,” JMERD, p.17-25, 2019.
[26] 李勝隆,「熱處理-金屬材料原理與應用」,全華圖書股份有限公司,2014
[27] E. Ghelloudj and H. Djebaili, “The Influence of Salt Bath Nitriding Variables on Hardness Layer of AISI 1045 Steel,” Acta Metallurgica Slovaca, vol. 22, No.3, p. 188-194, 2016.
[28] S. Gunasekaran, “FT-IR, FT-Raman, UV-Vis Spectra and Quantum Chemical Studies on Aspartame,” International Journal of Science, Technology and Humanies, p.93-98, 2014.
[29] J. Michalski, “D.C. glow discharge in a gas under lowered pressure in ion nitriding of Armco iron,” Journal of Materials Science Letters 19, p. 1411-1414, 2000.
[30] A. Bogaerts, E. Neyt, R. Gijbels, and J. Van der Mullen, “Gas discharge plasmas and their applications,” Spectrochimica Acta Part B:Atomic Spectroscopy, vol. 57, p. 609-658, 2002.
[31] 郭福升,「大面積常壓電漿技術之研究」,國立成功大學化系專班,碩士論文,2003。
[32] 王憲柏,「以常壓電漿噴射束於 SKD11 模具鋼表面硬化處理之研究」,國立臺灣科技大學機械工程系,碩士論文,2018。
[33] M. A. Lieberman and A. J. Lichtenberg Lieberman, “Principles of plasma discharges and materials processing,” New York: Wiley-interscience, vol. 2, 2005.
[34] Y. Setsuhara, “Low-temperature atmospheric-pressure plasma sources for plasma medicine,” Archives of Biochemistry and Biophysics vol. 605, p. 3-10, 2016.
[35] 楊超棨,「介電質常壓電漿產生器之開發及其於質譜分析之應用」,國立中山大學機械與機電工程學系,碩士論文,2010。
[36] Z. Rahman, H. Rahman, and A. Rahman, “Classification and generation of atmospheric pressure plasma and its principle applications,” International Journal of Mathematics and Physical Sciences Research, vol. 2, p. 127-146, 2015.
[37] E. Sozer, “Gaseous discharges and their applications as high power plasma switches for compact pulsed power systems,” MS Thesis, 2005.
[38] 張家豪、魏鴻文、翁政輝、柳克強,「電漿源原理與應用之介紹」,物理雙月刊(28-2),2006。
[39] C. Tendero, C. Tixier, C. P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,” Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, p. 2-30, 2006.
[40] J. P. Trelles, C. Chazelas, A. Vardelle, and J. V. R. Heberlein, “Arc Plasma Torch Modeling,” Journal of Thermal Spray Technology, vol. 29, p.728-752, 2009.
[41] Y. Zhang, L. Liu, “Trichel Pulse in Negative DC Corona discharge and Its Electromagnetic Radiations,” Journal of Electrical Engineering & Technology, vol. 10, p. 30-40, 2015.
[42] https://reurl.cc/Mv5DLk.
[43] N. Benard and E. Moreau, “Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma,” Experiments in Fluids, vol. 55, Article number: 1846, 2014.
[44] C. Tendero, C. Tixier, C. P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,” Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, p. 2-30, 2006.
[45] M. J. Gallagher, J. N. Vaze, S. Gangoli, “Rapid Inactivation of Airborne Bacteria Using Atmospheric Pressure Dielectric Barrier Grating Discharge,” IEEE Transactions on Plasma Science, vol. 35, Issue: 5, p. 1501-1510, 2007.
[46] V. Štěpánová, P. Slavíček, J. Kelar, “Atmospheric pressure plasma treatment of agricultural seeds of cucumber (Cucumis sativus L.) and pepper (Capsicumannuum L.) with effect on reduction of diseases and germination improvement,” Plasma Process and Polymers, vol. 15, Issue. 2, 2018.
[47] R. Yılmaz, A. O. Kurt, A. Demir, and Z. Tatl, “Effects of TiO2 on the mechanical properties of the Al2O3-TiO2 plasma sprayed coating, ” Journal of the European Ceramic Society. 27, p. 1319-1323, 2007.
[48] Y. J. Hong, Y. S. Seo, H. W. Lee, J. Choi, S. K. Kang, G. Y. Park, G. C. Kim, M. Yoon, and J. K. Lee, “Non-thermal atmospheric pressure plasma sources for biomedical applications,” Plasma Sources Science and Technology, vol. 19, p. 3-6, 2012.
[49] J. Miyamoto, T. Inoue, K. Tokuno, H. Tsutamori, and P. Abraha, “Surface Modification of Tool Steel by Atmospheric-Pressure Plasma Nitriding Using Dielectric Barrier Discharge,” Tribology Online, p. 11, p. 460-465, 2016.
[50] 廖駿偉、蕭祝螽、陳蔚宗,「OES 技術於電漿製程監測之應用」,奈米平台技術特刊,2004。
[51] W. D. Callister and D. G. Rethwisch, “Fundamentals of materials science and engineering:an integrated approach,” John Wiley & Sons, 2012.
[52] A. R. Franco, “The use of a vickers indenter in depth sensing indentation for measuring elastic modulus and vickers hardness,” Materials Research, vol. 7, No. 3, p. 483-491, 2004.
[53] 林麗娟,「X 光繞射原理及其應用」, 工業材料,編號86,p. 104,1994。
[54] 鄭信民、林麗娟,「X 光繞射應用簡介」, 工業材料雜誌,編號181,p. 101-102,2002。
[55] O. Gharbi, “In-situ investigation of elemental corrosion reactions during the surface treatment of Al-Cu and Al-Cu-Li alloys,” Chemical Physics [physics.chem-ph]. Université Pierre et Marie Curie - Paris VI, 2016.
[56] 羅聖全,「科學基礎研究之重要泯器-掃描式電子顯微鏡(SEM)」,科學研習,月刊第 52 卷,2013。
[57] 施正雄,儀器分析原理與應用,「五南圖書出版股份有限公司」,2012。
[58] R. Young and R. V. Kalin, “Microelectronics processing: inorganic materials characterization,” ACS Symp. Series, Plymouth, USA, 1986.
[59] 王彥捷,「透過陽極氧化技術改善濺鍍鋁膜 AZ91D 鎂合金之抗腐蝕性質」,國立臺灣科技大學機械工程系,碩士論文,2016
[60] K. V. Rybalka, L. A. Beketaeva, and A. D. Davydov, “Estimation of Corrosion Current by the Analysis of Polarization Curves: Electrochemical Kinetics Mode,” Russian Journal of Electrochemistry, vol. 50, p. 108–113, 2014.
[61] http://www.dzc.com.tw/tw_images/overview/5.pdf.
[62] https://ibidi.com/content/216-confocal-microscopy.
[63] 翁詩瑤,「優化介層設計氮化鋁鈦鉻硬質薄膜之抗衝擊疲勞與機械性能分析」,國立虎尾科技大學機械與電腦輔助工程系,碩士論文,p. 50、p. 88-p. 90,2018。
[64] 王繼敏,「不鏽鋼與金屬腐蝕」,科技圖書股份有限公司,1992。
[65] T. Balusamya, T. S. N. Sankara Narayanana, K. Ravichandranb, S. Parkc, M. H. Leec, “Plasma nitriding of AISI 304 stainless steel: Role of surface mechanical attrition treatment,” Materials Characterization, vol.85, p. 38–47, 2013.
[66] 鍾宛庭,「電漿功率效應於SKD11工具鋼之常壓電漿噴射束表面硬化處理」 ,國立臺灣科技大學機械工程系,碩士論文,2019。
[67] F. F. Chen, “Langmuir probe analysis for high density plasmas,” Physics of Plasmas, vol. 8, p. 3029-3041, 2001.
[68] F. M. El-Hossary, N. Z. Negm, S. M. Khalil and M. Raaif, “Surface modification of titanium by radio frequency plasma nitriding,” Thin Solid Films, vol. 497, p. 196-202, 2006.
[69] B. Paosawatyanyong, J. Pongsopa, P. Visuttipitukul and W. Bhanthumnavin, “Nitriding of tool steel using dual DC/RFICP plasma process,” Surface and Coatings Technology, vol. 306, p. 351-357, 2016.
[70] H. Nagamatsua, R. Ichikia, Y. Yasumatsua, “Steel nitriding by atmospheric-pressure plasma jet using N2/H2 mixture gas,” Surface and Coatings Technology, vol. 225, p. 26-33, 2013.
[71] A. R. Mashreghi, S. M. Y. Soleimani, and S. Saberifar, “The investigation of wear and corrosion behavior of plasma nitrided DIN 1.2210 cold work tool steel,” Materials & Design, vol. 46, p. 532-538, 2013.
[72] F. Haftlanga, A. Habibolahzadeha, and M. H. Sohib, “Improving electrochemical properties of AISI 1045 steels by duplex surface treatment of plasma nitriding and aluminizing,” Applied Surface Science, vol. 329, p. 240-247, 2015.
[73] L. Yang, H. Yongyong, W. Wei, M. Junyuan, Z. Lei, Z. Yijie, and Y. Qianwen, “Plasma Nitriding of AISI 304 Stainless Steel in cathodic and Floating Electric Potential: Influence on Morphology Chemical Characteristic and Tribological Behavior,” Journal of Materials Engineering and Performance, vol. 27, p. 848-960, 2018.
[74] Q. Xujuan, G. Xianglong, L. Junqiang, C. Liangyu, Q. Jining, and L. Weijie, “Erosion-wear and intergranular corrosion resistance properties of AISI 304L austenitic stainless steel after low-temperature plasma nitriding,” Journal of Alloys and Compounds, vol. 698, p. 1094-1101, 2016.
[75] J. Y. Maetza, T. Douillarda, S. Cazottesa, C. Verdua, X. Kl ́ebera, “M23C6 carbides and Cr2N nitrides in aged duplex stainless steel: a SEM, TEM and FIB tomography investigation,” Micron, vol. 84, p. 43-53, 2016.
[76] L. Lin, S. Chen, C. Wu, and J. Hung, “Microstructure and antibacterial properties of microwave plasma nitrided layers on biomedical stainless steels,” Applied Surface Science, vol. 257, p. 7375-7380, 2011.
[77] Y. zhen, and Y. Jianga, “Mechanical properties and electronic structures of M23C6 (M=Fe, Cr, Mn)-type multicomponent carbides,” Journal of Alloys and Compounds, vol. 648, p. 874-880, 2015.
[78] H. Pardeshi, S. Thakur, P. P. Patil, and J. Bange, “Synthesis of SiOx Film by Atmospheric Pressure Plasma Assisted CVD for Corrosion Protection of Low Carbon Steel,” Plasma Processes and Polymers, p. 202000060, 2020.
[79] 蔡孟蒓,「三元合金靶沉積氮化鋁鈦硼及氮化鋁鈦矽硬質薄膜之機械性質與磨潤性能」,國立虎尾科技大學,機械與電腦輔助工程系碩士班,碩士論文,2018。
[80] Y. B. Park, “Bulk and interface properties of low-temperature silicon nitride films deposited by remote plasma enhanced chemical vapor deposition,” Article in Journal of Materials Science Materials in Electronics, vol. 12, p. 515-522, 2001.
[81] C. E. Foerster, F. C. Serbena, S. L. R. da Silva, C. M. L. epienskib “Mechanical and tribological properties of AISI 304 stainless steel nitrided by glow discharge compared to ion implantation and plasma immersion ion implantation,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 257, p. 732-736,2007.
[82] M. Godec, Č. Donik, A. Kocijan, B. Podgornik, and D. A. Skobir Balantič, “Effect of post-treated low-temperature plasma nitriding on the wear and corrosion resistance of 316L stainless steel manufactured by laser powder-bed fusion,” Additive Manufacturing, vol. 32, p. 2-6, 2020.
[83] A. Farghali and T. Aizawa, “Phase Transformation Induced by High Nitrogen Content Solid Solution in the Martensitic Stainless Steels Materials Transactions,” vol. 58, p. 697-700, 2017.
[84] A. F. Yetim, F. Yildiz, A. Alsaran, A. ̧elik, “Surface modification of 316L stainless steel with plasma nitriding,” Kovove Materialy, vol. 46, p. 105–115, 2008.
[85] L. Wang, S. Ji, and S. Juncai, “Effect of nitriding time on the nitrided layer of AISI 304 austenitic stainless steel,” Surface & Coatings Technology, vol. 200, p. 2067-2070, 2006.
[86] M. Sahin and C. Sevil, “Investigation of properties of ion-nitrided AISI 304 austenitic-stainless steel,” Industrial Lubrication and Tribology, vol. 63, p. 359-366, 2011.
[87] J. Wang, L. Yuanhua, Y. Jing, Z. Dezhi, H. Runbo, and H. Zejing, “Modification of AISI 304 Stainless Steel Surface by the Low Temperature Complex Salt Bath Nitriding at 430°C,” ISIJ International, vol. 52, p. 1118–1123, 2012.
[88] J. L. Rocha, R. S. Pereira, and M. C. L. Oliveira, “Investigation on the Relationship between the Surface Chemistry and the Corrosion Resistance of Electrochemically Nitrided AISI 304 Stainless Steel,” International Journal of Corrosion, vol. 2019, p. 7023283:1-12, 2019.

無法下載圖示 全文公開日期 2025/08/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE