簡易檢索 / 詳目顯示

研究生: 蔡岱樺
Dai-Hua Tsai
論文名稱: 深度學習演算法對胸部 X 光的心臟衰竭預測
Prediction of Heart Failure from Chest X-Ray by Deep-Learning Algorithms
指導教授: 呂政修
Jenq-Shiou Leu
口試委員: 呂政修
Jenq-Shiou Leu
蔡佳醍
Chia-Ti Tsai
蔡青峰
Chin-Feng Tsai
衛信文
Hsin-Wen Wei
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 38
中文關鍵詞: 心臟衰竭人工智慧深度學習卷積神經網絡胸部X 光
外文關鍵詞: Heart failure, artificial intelligence, deep learning, convolutional neural network, chest X-ray
相關次數: 點閱:237下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於世界各地的老年人口不斷增加,心臟衰竭(HF)是一個全球性的流行病。胸部X 光(CXR) 檢查是最常見的非侵入式檢查,可以提供病人心臟的主要信息。胸部X 光檢查可以提供有關病人心臟狀況的關鍵訊息。

    本研究的目的是評估在全球範圍內,用一種簡單而經濟的方法,提供有關病人心臟狀況的關鍵訊息。本研究旨在評估人工智能(AI)在從CXR 診斷HF 方面的可能性。

    我們提出專門為CXR 圖像建立的前處理系統流程,改善心臟衰竭模型訓練的成效。並分析不同大小的數據集、不同模型結構對效能的影響。數據集包括1,840 張HF 的CXR 圖像和2,100 張非HF 的圖像。準確率、精確度、召回率和F1 得分也相互比較,以獲得最適合從CXR 圖像識別HF 的模型。

    在這些模型中,與其他模型(VGG16、EfficientNetB3、ResNet18、MnasNet、Inception-V3 和Resnext50)相比,Inception-ResNet-v2 是診斷CXR 圖像中HF 的最佳模型(準確度91.0%,精確度94.9%,召回率87.9%,F1 分數91.2%)。

    在心血管疾病中人工智慧是一個在HF 的管理中的新興應用。我們提供了最合適的CNN 模型,用於從CXR 圖像中識別HF。我們的發現可以提供適當的診斷和治療HF。


    Heart failure (HF) is a global epidemic due to the increasing number of elderly people around the world. A chest x-ray(CXR) is the most common non-invasive test that can provide key information about a patient's heart. The test can provide key information about the patient's heart condition. The purpose of this study is to evaluate a simple and cost-effective method to provide key information about a patient's heart condition on a global scale. The purpose of this study is to evaluate the possibility of artificial intelligence (AI) in diagnosing HF from CXR.

    We proposed a preprocessing system process built specifically for chest X-ray images
    to improve the performance of HF model training. We also analyzed the impact of different size datasets and different model structures on the performance. The dataset consists of 1,840 CXR images of HF and 2,100 images of non-HF. Accuracy, precision, recall, F1 score and Class activation Map(Class Activation Map) were also compared with each other to obtain the most suitable model for recognizing HF from CXR images.

    Among these models, Inception-ResNet-v2 was the best model for diagnosing HF in CXR images compared with other models (VGG16, EfficientNetB3, ResNet18, MnasNet, Inception-V3, and Resnext50) (91.0% accuracy, 94.9% precision , 87.9% recall, and
    91.2% F1 score).

    An emerging application of artificial intelligence in cardiovascular disease is in the management of HF. We provide the most suitable CNN model for identifying HF cation from CXR images. Our findings can provide appropriate diagnosis and treatment of HF.

    Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Heart Failure, HF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 CXR characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 HF Diagnosis Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2.3.1 Machine Learning Approaches . . . . . . . . . . . . . . . . . . . . . . . . .4 2.3.2 Deep Learning Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 Convolutional Neural Network, CNN . . . . . . . . . . . . . . . . . . . . . . .5 2.4.1 Visual Geometry Group, VGG . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4.2 Deep Residual Network, ResNet . . . . . . . . . . . . . . . . . . . . . . . .5 2.4.3 GoogLeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 2.4.4 MnasNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 3.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 DICOM File Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 3.3 Image Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 3.4 HF models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 4.2 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.1 Detect HF from AF patients . . . . . . . . . . . . . . . . . . . . . . . . . .18 5.2 Influence of Image Pre-processing . . . . . . . . . . . . . . . . . . . . . . 19 5.3 Influence of Variety Datasets . . . . . . . . . . . . . . . . . . . . . . . . 20 5.4 Influence of Different HF Models . . . . . . . . . . . . . . . . . . . . . . .21 5.4.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 References . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 26 Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    [1] W. H. Organization, “The top 10 causes of death,” 2020.
    [2] T. Matsumoto, S. Kodera, H. Shinohara, H. Ieki, T. Yamaguchi, Y. Higashikuni, A. Kiyosue, K. Ito, J. Ando, E. Takimoto, et al., “Diagnosing heart failure from chest x-ray images using deep learning,” International Heart Journal, vol. 61, no. 4, pp. 781–786, 2020.
    [3] D. Pan, P. Pellicori, K. Dobbs, J. Bulemfu, I. Sokoreli, A. Urbinati, O. Brown, S. Sze, A. S. Rigby, S. Kazmi, et al., “Prognostic value of the chest x-ray in patients hospitalised for heart failure,” Clinical Research in Cardiology, vol. 110, no. 11, pp. 1743–1756, 2021.
    [4] A. Hosny, C. Parmar, J. Quackenbush, L. H. Schwartz, and H. J. Aerts, “Artificial intelligence in radiology,” Nature Reviews Cancer, vol. 18, no. 8, pp. 500–510, 2018.
    [5] N. Nasrullah, J. Sang, M. S. Alam, M. Mateen, B. Cai, and H. Hu, “Automated lung nodule detection and classification using deep learning combined with multiple strategies,” Sensors, vol. 19, no. 17, p. 3722, 2019.
    [6] L.-Q. Zhou, J.-Y. Wang, S.-Y. Yu, G.-G. Wu, Q. Wei, Y.-B. Deng, X.-L. Wu, X.-W. Cui, and C. F. Dietrich, “Artificial intelligence in medical imaging of the liver,” World journal of gastroenterology, vol. 25, no. 6, p. 672, 2019.
    [7] T. Magadza and S. Viriri, “Deep learning for brain tumor segmentation: a survey of state-of-the-art,” Journal of Imaging, vol. 7, no. 2, p. 19, 2021.
    [8] C. Hassan, M. Spadaccini, A. Iannone, R. Maselli, M. Jovani, V. T. Chandrasekar, G. Antonelli, H. Yu, M. Areia, M. Dinis-Ribeiro, et al., “Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: a systematic review and meta-analysis,” Gastrointestinal endoscopy, vol. 93, no. 1, pp. 77–85, 2021.
    [9] A. L. Bui, T. B. Horwich, and G. C. Fonarow, “Epidemiology and risk profile of heart failure,” Nature Reviews Cardiology, vol. 8, no. 1, pp. 30–41, 2011.
    [10] A. Javeed, S. U. Khan, L. Ali, S. Ali, Y. Imrana, and A. Rahman, “Machine learning-based automated diagnostic systems developed for heart failure prediction using different types of data modalities: a systematic review and future directions,” Computational and Mathematical Methods in Medicine, vol. 2022, 2022.
    [11] A. Groenewegen, F. H. Rutten, A. Mosterd, and A. W. Hoes, “Epidemiology of heart failure,” European journal of heart failure, vol. 22, no. 8, pp. 1342–1356, 2020.
    [12] T. Koga and K. Fujimoto, “Images in clinical medicine. kerley’s a, b, and c lines,” The New England journal of medicine, vol. 360, no. 15, p. 1539, 2009.
    [13] Y. Udovychenko, A. Popov, and I. Chaikovsky, “Multistage classification of current density distribution maps of various heart states based on correlation analysis and k-nn algorithm,” Frontiers in Medical Technology, vol. 3, 2021.
    [14] R. Arsanjani, D. Dey, T. Khachatryan, A. Shalev, S. W. Hayes, M. Fish, R. Nakanishi, G. Germano, D. S. Berman, and P. Slomka, “Prediction of revascularization after myocardial perfusion spect by machine learning in a large population,” Journal of Nuclear Cardiology, vol. 22, no. 5, pp. 877–884, 2015.
    [15] L. Šajn and M. Kukar, “Image processing and machine learning for fully automated probabilistic evaluation of medical images,” Computer methods and programs in biomedicine, vol. 104, no. 3, pp. e75–e86, 2011.
    [16] T. Matsumoto, S. Kodera, H. Shinohara, H. Ieki, T. Yamaguchi, Y. Higashikuni, A. Kiyosue, K. Ito, J. Ando, E. Takimoto, et al., “Diagnosing heart failure from chest x-ray images using deep learning,” International Heart Journal, vol. 61, no. 4, pp. 781–786, 2020.
    [17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
    [18] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
    [19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” pp. 770–778, 2016.
    [20] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,” pp. 1492–1500, 2017.
    [21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” pp. 1–9, 2015.
    [22] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet and the impact of residual connections on learning,” 2017.
    [23] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le, “Mnasnet: Platformaware neural architecture search for mobile,” pp. 2820–2828, 2019.
    [24] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” pp. 6105–6114, 2019.
    [25] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Computer vision, graphics, and image processing, vol. 39, no. 3, pp. 355–368, 1987.
    [26] “Covid-19 radiography database,” 2020.
    [27] T. A. McDonagh, M. Metra, M. Adamo, R. S. Gardner, A. Baumbach, M. Böhm, H. Burri, J. Butler, J. Čelutkienė, O. Chioncel, et al., “2021 esc guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the european society of cardiology (esc) with the special contribution of the heart failure association (hfa) of the esc,” European heart journal, vol. 42, no. 36, pp. 3599–3726, 2021.
    [28] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative localization,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2921–2929, 2016.
    [29] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE international conference on computer vision, pp. 618–626, 2017.

    無法下載圖示 全文公開日期 2027/07/08 (校內網路)
    全文公開日期 2027/07/08 (校外網路)
    全文公開日期 2027/07/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE