簡易檢索 / 詳目顯示

研究生: 龔振瑋
Jhen-wei Gong
論文名稱: 電壓估測法於三相不平衡系統變流器之應用
Application of Voltage Estimation to Three-phase Inverters under Unbalanced Systems
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
none
吳瑞南
Ruay-Nan Wu
林法正
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 74
中文關鍵詞: 三相不平衡系統三相市電併聯交流-直流功率轉換器全通濾波器
外文關鍵詞: three-phase voltage unbalanced system, three-phase grid-connection, ac-dc power converter, all-pass filter
相關次數: 點閱:360下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在發展應用於三相功率轉換器之三相不平衡系統的控制策略, 以作雙向功率之轉換。整體系統架構包含具雙向功率轉換功能之三相交流-直流功率轉換器,可降低市電側之電流總諧波失真率。本文利用數位全通濾波器產生三相落後90度之電壓波形,以計算出市電側之每相電壓峰值及單位弦式波形,同時配合直流鏈電壓與市電側電流閉迴路控制,降低市電電流總諧波失真率。在雙向功率轉換方面,當市電側的功率轉換至直流側,其電壓及電流的相位相同,而當直流側功率轉換至市電側,其電壓與電流相位相差180度,達到高功因的性能。

本文採用32位元數位信號處理器TMS320F28335為系統之控制核心,直流側電壓及電流閉迴路控制軟體皆由C語言完成,可有效減少硬體電路,且提高系統可靠度。利用三相平衡的電壓角位置估測方法,在R相電壓衰減30%時,具功因校正功能,輸出功率為4.0kW,電流總諧波失真為6.31%;具市電併聯功能,輸入功率為3.8kW,電流總諧波失真為6.78%。欲改善不平衡所造成的影響,角位置估測採用數位濾波器,經計算得到三相單位弦式波形進行控制,在R相電壓衰減30%時,具功因校正功能,輸出功率為4.0kW,其效率為90.28%,功率因數約為0.99,電流總諧波失真為2.59%,在R相電壓衰減30%且相位落後30度時,電流總諧波失真為2.93%;在R相電壓衰減30%時,具市電併聯功能,輸入功率為3.8kW,其效率為93.33%,電流總諧波失真為3.40%,在R相電壓衰減30%且相位落後30度時,電流總諧波失真為3.65%。如此,具有明顯改善市電側的電流諧波含量。


This thesis aims to develop a three-phase unbalanced system control strategy that can be applied to three-phase power converters for bidirectional power conversion. The system consists of a three-phase ac-dc power converter which provides bidirectional power conversion that is capable of reducing the current total harmonic distortion. In this thesis, a digital all-pass filter, which enables three-phase voltage waveforms to lag 90 degrees, is adopted so that the peak voltage and unit sine wave of each phase can be calculated. In addition, the total harmonic distortion of the current can be reduced by using closed-loop control strategy of dc bus link voltage and grid current. The voltage and current are in phase when the power is converted from the ac side to the dc side. On the other hand, the voltage and current are out of phase when the power is converted from dc to ac. In conclusion, the system achieves high power factor performance.
This thesis uses a 32-bits digital signal processor, TMS320F28335, as the control core. The voltage and current feedback control strategies have been accomplished by programming with C language which effectively reduces the number of hardware components and improves system reliability. Using the method of three-phase voltage balance can estimate the angular position of the ac voltage. R-phase voltage amplitude is decreased by 30% while the total harmonic distortion of current is 6.31% and the output power with power factor correction is 4.0kW. Besides, R-phase voltage amplitude is decreased by 30% when the total harmonic distortion of current is 6.78% and the input power with grid-connection is 3.8kW. To improve the imbalance effects, the angular position was calculated to obtain the unit waveforms of three-phase sine wave with digital filter for control purposes. The output power with power factor correction is 4.0kW as R-phase voltage amplitude is decreased by 30% and the efficiency is 90.28% with the power factor of 0.99 and total current harmonic distortion of 2.59%. The output power with power factor correction is 4.0kW when R-phase voltage amplitude is decreased by 30% and the phase lag 30 degrees with total current harmonic distortion of 2.93%. The input power with grid-connection is 3.8kW, with R-phase voltage amplitude decreased by 30% and the efficiency of 93.33% with 3.40% total harmonic distortion of the current. Besides, the input power with grid-connection is 3.8kW when R phase voltage amplitude is decreased by 30% and the phase lag 30 degrees with 3.65% total harmonic distortion of current. Thereby improves the current total harmonic distortion significantly.

中文摘要I 英文摘要II 誌  謝III 目  錄IV 符號索引VI 圖表索引VIII 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻探討 2 1.3 本文架構與特色 3 1.4 本文大綱 5 第二章 三相平衡系統之變頻器的分析及控制 6 2.1 前言 6 2.2 三相雙向功率轉換器的數學模式 6 2.3 三相平衡系統之市電側電壓角位置的估測 9 2.4 變流器之直流側電壓及電流控制策略12 2.5 三相不平衡電壓的影響 14 2.5.1 具功因校正功能之三相不平衡系統 15 2.5.2 具市電併聯功能之三相不平衡系統 20 2.6 結語 24 第三章 三相電壓不平衡系統之三相換流器控制策略 26 3.1 前言 26 3.2 電壓不平衡率的定義 26 3.3 三相電壓不平衡的角位置估測 27 3.4 三相不平衡系統之變流器控制策略 31 3.5 結語 32 第四章 實體製作及實測結果 33 4.1 前言 33 4.2 硬體電路的校正 33 4.3 控制軟體的流程圖 36 4.4 三相不平衡系統的實測結果 40 4.4.1 三相不平衡的電壓角位置估測方法,具功因校正功能的實測 41 4.4.2 三相不平衡的電壓角位置估測方法,具市電併聯功能的實測 48 4.5 結語 55 第五章 結論與建議56 5.1 結論 56 5.2 建議 57 參考文獻 58

[1] Y. Chen and X. M. Jin, “Modeling and control of three-phase
voltage source PWM rectifier”. Proc. of IEEE International Power
Electronics and Motion Control Conference, vol. 3, pp. 1-4, 2006.
[2] Y. Chen and K. Smedley, “Three-phase boost-type grid-connected
inverter”, IEEE Transactions on Power Electronics, vol. 23, no. 5, pp.
2301-2309, 2008.
[3] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and
D. P. Kothari, “A review of three-phase improved power quality ac–dc
converters”, IEEE Transactions on Industrial Electronics, vol. 51,
no. 3, pp. 641-660, 2004.
[4] J. R. Rodriguez, J. W. Dixon, J. R. Espinoza, J. Pontt and P. Lezana,
“PWM regenerative rectifiers: State of the art”, IEEE Transactions
on Industrial Electronics, vol. 52, no. 1, pp. 5-22, 2005.
[5] P. Rioual, H. Pouliquen and J. P. Louis, “Regulation of a PWM
Rectifier in the unbalanced network state using a generalized model”,
IEEE Transactions on Power Electronics, vol. 11, no. 3, pp. 495-502,
1996.
[6] H. S. Song and K. Nam, “Dual current control scheme for
PWM converter under unbalanced input voltage conditions”,
IEEE Transactions on Industrial Electronics, vol. 46, no. 5, pp.
953-959, 1999.
[7] Y. Suh, V. Tijeras and T. A. Lipo, “A control method in dq
synchronous frame for PWM boost rectifier under generalized
unbalanced operating conditions”, Proc. of IEEE Power Electronics
Specialists Conference, vol. 3, pp. 1425–1430, 2002.

[8] Y. Suh, V. Tijeras and T. A. Lipo, “A nonlinear control of the
Instantaneous power in dq synchronous frame for PWM AC/DC
converter under generalized unbalanced operating conditions”,
Proc. of IEEE Industry Applications Conference, vol. 2, pp. 1189-1196,
2002.
[9] Y. Suh and T. A. Lipo, “Control scheme in hybrid synchronous
Stationary frame for PWM ac/dc converter under generalized
unbalanced operating conditions,” Proc. of IEEE Industry Applications
Conference, vol. 42, no. 3, pp. 825–835, 2006.
[10] Y. Suh and T. A. Lipo, “Modeling and analysis of instantaneous active
And reactive power for PWM ac/dc converter under generalized
unbalanced network,” IEEE Transactions on Power delivery, vol. 21,
no. 3, pp. 1530–1540, 2006.
[11] X. H. Wu, S. K. Panda and J. X. Xu, “Analysis of the instantaneous
power flow for three-phase PWM boost rectifier under unbalanced
supply voltage conditions”, IEEE Transactions on Power Electronics,
vol. 23, no. 4, pp. 1679–1691, 2008.
[12] X. H. Wu, S. K. Panda, and J. X. Xu, “DC link voltage and supply-
side current harmonics minimization of three phase PWM boost
rectifiers using frequency domain based repetitive current
controllers”,
IEEE Transactions on Power Electronics, vol. 23, no. 4, pp.
1679–1691, 2008.
[13] A. V. Stankovic and T. A. Lipo, “A novel control method for
input output harmonic elimination of the PWM boost type rectifier
under unbalanced operating conditions”, IEEE Transactions on
Power Electronics, vol. 16, no. 5, pp. 603–611, 2001.

[14] B. Yin, R. Oruganti, S. K. Panda and A. K. S. Bhat, “An
output-power-control strategy for a three-phase PWM rectifier
under unbalanced supply conditions,” IEEE Transactions on
Industrial Electronics, vol. 55, no. 5, pp. 2140-2151, 2008.
[15] W. D. Jiang, S. W. Du, L. C. Chang, Y. Zhang and Q. Zhao,
“Hybrid PWM strategy of SVPWM and VSVPWM for NPC
three-level voltage-source inverter,” IEEE Transactions on Power
Electronics, vol. 25, no. 10, pp. 2607-2619, 2010.
[16] 楊承翰,“電壓不平衡率之定義及電壓不平衡對系統與設備影響之
研究”,國立台灣科技大學電機工程研究所碩士論文,民國九十
七年七月。
[17] P. Rodriguez, A. V. Timbus, R. Teodorescu, M. Liserre and F.
Blaabjerg, “Flexible active power control of distributed power
generation systems during grid faults,” IEEE Transactions on
Industrial Electronics, vol. 54, no. 5, pp. 2583-2592, 2007.
[18] M. Castilla, J. Miret, J. L. Sosa, J. Matas and L. G. D. Vicuna,
“Grid-fault control scheme for three-phase photovoltaic inverters
with adjustable power quality characteristics,” IEEE Transactions
on Power Electronics, vol. 25, no. 12, pp. 2930-2940, 2010.
[19] A. Camacho, M. Castilla, J. Miret, J. C. Vasquez and E. A. Gallo,
“Flexible voltage support control for three-phase distributed
generation inverters under grid fault,” IEEE Transactions
on Industrial Electronics, vol. 60, no. 4, pp. 1429-1441, 2013.

QR CODE