簡易檢索 / 詳目顯示

研究生: 潘孝聰
PHAU - SIAO CONG
論文名稱: 三相永磁式同步發電機功率控制系統研製
Development of Power Control System for Three-phase Permanent-magnet Synchronous Generators
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian Yeh
吳瑞南
Ruay-Nan Wu
王順源
Shun-Yuan Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 53
中文關鍵詞: 三相永磁式同步發電機三相功率控制市電併網
外文關鍵詞: three-phase permanent magnet synchronous generat, three-phase power converter, three-phase grid-connection
相關次數: 點閱:298下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製三相永磁式同步發電機功率控制系統,並將功率饋入市電。在發電機側採用轉速發電機作轉速回授與角位置的估測,並結合轉子座標系統轉換,以完成永磁式同步發電機的功率控制;而在三相市電方面,則回授市電電壓並利用數位鎖相迴路以估測市電相電壓角位置,俾用於同步旋轉座標系統轉換,完成將功率饋入市電及穩定直流鏈電壓。
    本文已完成系統之實體製作,輸出功率為1kW,直流鏈電壓為360V,市電側的功因數接近1.0,系統整體效率為92%。整個系統共有二組三相功率轉換器,分別置於三相永磁式同步發電機輸出端及三相市電側。前者採用交流-直流功率控制,而後者之直流-交流功率轉換器則採直流鏈電壓控制策略,每組三相功率轉換器皆由個別數位控制器完成,並以C語言撰寫完成。系統以Matlab/simulink進行控制策略模擬,並作性能評估。最後,再由實測驗證系統的可行性。


    This thesis aims to develop a three phase permanent-magnet synchronous generator (PMSG) power control system. A generator is used to estimate the speed and rotor position to facilitate coordinate transformation for the power control of PMSG. Whereas on the grid side, grid voltage is fed to digital phase-locked loop to estimate the required phase angle of the grid voltage for frame transform to feed the power into the grid and stabilize the dc-voltage.
    An experimental system is built to yield the dc-link voltage of 360V for the output power of 1kW with unity grid power factor and 90% system efficiency. The whole system contains a rectifier and an inverter, which are placed between PMSG and the grid. Power as well as dc-voltage control strategies are conducted for the rectifier and the inverter, respectively, with each three phase power converter controlled by its own digital controller using C language. The system is simulated by Matlab/Simulink. Finally the feasibility of the system is confirmed by experiment.

    中文摘要 英文摘要 誌  謝 目  錄 符號索引 圖表索引 第一章 緒論 1.1 研究動機及目的 1.2 文獻探討 1.3 系統架構及本文特色 1.4 本文大綱 第二章 三相永磁式同步發電機的控制策略 2.1 前言 2.2 三相永磁式同步發電機的數學模式 2.3 三相永磁式同步發電機的轉速及角位置估測 2.4 三相永磁式同步發電機功率轉換器之控制策略 2.5 三相永磁式同步發電機的功率控制策略模擬及實測 2.6 結語 第三章 三相市電側之功率轉換器控制策略 3.1 前言 3.2 三相功率轉換器之控制策略 3.2.1 三相電壓角位置及數位鎖相控制迴路 3.2.2 直流鏈電壓控制策略 3.3 三相市電側的三相功率轉換器控制策略之模擬及實測 3.4 結語   第四章 控制軟體規劃及實測 4.1 前言 4.2 系統整合的控制軟體規劃 4.2.1 市電側三相功率轉換器主程式流程 4.2.2 三相永磁式同步發電機側功率轉換器主程式流程 4.3 系統整合的模擬及實測結果 4.4 結語 第五章 結論及建議 5.1 結論 5.2 建議 參考文獻 附錄A 系統之規格及參數 附錄B 系統控制策略之計算機模擬

    [1] J. J. Conti, P. D Holtberg, J. R. Diefenderfer, S. A. Napolitano, A. M. Schaal, J. T. Turnure and L. D. Westfall, “Annual Energy Outlook 2015,” DOE/EIA - 0383(2015) US Energy Information Administration, pp.15, 2015.
    [2] Z. Kai, H. M. Kojabadi, P. Z. Wang and C. Liuchen, “Modeling of a Converter-connected Six-phase Permanent Magnet Synchronous Generator,” International Conference on Power Electronics and Drives Systems, pp.1096-1100, 2005
    [3] J. Azzouzi, G. Barakat and B. Dakyo, “Analytical Modeling of an Axial Flux Permanent Magnet Synchronous Generator for Wind Energy Application,” IEEE International Conference on Electric Machines and Drives, pp. 1255-1260, 2005.
    [4] A. Binder and T. Schneider, “Permanent Magnet Synchronous Generators for Regenerative Energy Conversion - a Survey,” European Conference on Power Electronics and Applications, p. 10, 2005.
    [5] T. M. H. Nicky, K. Tan and S. Islam, “Mitigation of Harmonics in Wind Turbine Driven Variable Speed Permanent Magnet Synchronous Enerators,” The 7th International Power Engineering Conference, pp. 1159-1164, 2005.
    [6] H. Li and Z. Chen, “Design Optimization and Site Matching of Direct-drive Permanent Magnet Wind Power Generator Systems,” Renewable Energy, vol. 34, no. 4, pp.1175-1184, 2009.
    [7] M. Popesci, M. V. Cistelecan, L. Melcescu and M. Covrig, “Low Speed Directly Driven Permanent Magnet Synchronous Generators for Wind Energy Applications,” International Conference on Clean Electrical Power, pp. 784-788, 2007.
    [8] F. Wang, J. Bai, Q. Hou and J. Pan, “Design Features of Low Speed Permanent Magnet Generator Direct Driven by Wind Turbine,” Proceedings of the Eighth International Conference on Electrical Machines and Systems, vol. 2, pp.1017-1020, 2005.
    [9] 林君達, ” 低噪音風能轉換系統用永磁式同步發電機之設計及控制”, 國立台灣科技大學電機工程研究碩士論文,民國九十八年七月
    [10] A. L. Julian, G. Oriti and T. A. Lipo, “Elimination of Common-mode Voltage in Three-phase Sinusoidal Power Converters, ” IEEE Transactions on Power Electron, vol. 14, no. 5, pp. 982-989, 1999.
    [11] Y. Chen and X. M. Jin, “Modeling and Control of Three-phase Voltage Source PWM Rectifier”, International Power Electronics and Motion Control Conference, vol. 3, no. 1, pp. 427-432, 2006.
    [12] Y. Chen and K. Smedley, “Three-phase Boost-type Grid-connected Inverter”, IEEE Transactions on Power Electronics, vol. 23, no. 5, pp. 2301-2309, 2008.
    [13] J. S. Thongam, R. Beguenane, A. F. Okou, M. Tarbouchi, A. Merabet and P. Bouchar, “A Method of Tracking Maximum Power Points in Variable Speed Wind Energy Conversion,” Systems International Symposium on Power Electronics,Electrical Drives, Automation and Motion,1095-1100,2012
    [14] E. Koutroulis and K. Kalaitzakis, “Design of a Maximum Power Tracking System for Wind-Energy-Conversion Applications,” IEEE Transactionsc on Industrial Electronics, Vol. 53, No. 2, APRIL 2006
    [15] S. A. O. da Silva, E. Tomizaki, R. Novochadlo and E. A. A. Coelho, “PLL Structures for Utility Connected Systems under Distorted Utility Conditions,” IEEE Industrial Electronics Conference, vol. 4, no. 1, pp. 2636-2641, 2006.
    [16] S. K. Chung, “Phase-locked Loop for Grid-connected Three-phase Power Converter Systems,” IEEE Proceedings Electronic Power Applications, vol. 147, no. 3, pp. 213-219, 2000.
    [17] 簡君哲, ”微電網之三相變頻器併聯控制策略研製”, 國立台灣科技大學電機工程研究碩士論文,民國一百零一年七月
    [18] S. J. Leon, “Linear Algebra with Applications,” Pearson Education, Inc., 7th Edition, 2006
    [19] J. Khodaparast and A. Dastfan, “Analysis on Tracking Performance of D-Q Transformation Based Method,” Harmonics and Quality of Power (ICHQP), 2012 IEEE 15th International Conference, 203-208, 2012
    [20] F. Yang, A. Taylor, H. Bai, B. Cheng, A. Khan, Y. J. Lee and Z. Nie, “Using D-Q Transformation to Variable Switching Frequency PWM Control for Interior Permanent Magnet Synchronous Motor Drives” Energy Conversion Congress and Exposition (ECCE), pp 5192-5197 ,2014
    [21] D. Sindhu, R. Aswinudhaya, G. Irusapparajan and V. Sudhagar, “Analysis of the Performance of Hybrid AC/DC Microgrid by Using D-Q Transformation” Circuits, Power and Computing Technologies (ICCPCT), pp107 – 114 ,2013
    [22] 尤上瑋, ” 具負載功率補償之雙向功率轉換三相換流器的研製”, 國立台灣科技大學電機工程研究碩士論文,民國一百零三年七月
    [23] M. Wu and R. Zhao, “Method Analysis and Comparison of SVPWM and SPWM,” Chinese Control Conference, pp.3184-3187, 2010.
    [24] R. Boopathi, P. Muthukumar, P. M. Mary and S. Jeevananthan, “Investigations on Harmonic Spreading Effects of SVPWM Switching Patterns in VSI FED AC Drives,” International Conference on Advances in Engineering, Science and Management, pp.651-656, 2012.
    [25] Z. Shu, J. Tang, Y. Guo and J. Lian, “An Efficient SVPWM Algorithm with Low Computational Overhead for Three-phase Inverters,” IEEE Transactions on Power Electronics, vol.22, no.5, pp.1797-1805, 2007
    [26] Z. Shu, N. Ding, J. Chen, H. Zhu and X. He, “Multilevel SVPWM with Dc-link Capacitor Voltage Balancing Control for Diode-clamped Multilevel Converter Based STATCOM,” IEEE Transactions on Industrial Electronics, vol.60, no.5, pp.1884-1896, 2013.
    [27] B. Wang, K. Huang, J. Cui and G. Wang, “The Performance Analysis of Double-SVPWM in AC-DC-AC Bidirectional Converter for AC Excited Doubly FED Generation System,” International Conference on Power System Technology, pp. 22-26 ,2006.
    [28] 劉昌煥著,交流電機控制,東華書局,第四版,2013年。

    QR CODE