簡易檢索 / 詳目顯示

研究生: Tommy Pranata
Tommy Pranata
論文名稱: 應用於60GHz毫米波雷達之耦合饋入陣列天線設計
Coupled-fed Array Antenna Design for 60 GHz Millimeter Wave Radars
指導教授: 楊成發
Chang-Fa Yang
口試委員: Wen-Hsiung Lin
Wen-Hsiung Lin
Chun-Yi Chai
Chun-Yi Chai
Chih-Yuan Chu
Chih-Yuan Chu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 121
中文關鍵詞: 耦合饋入貼片單層設計毫米波雷達串聯陣列並聯陣列
外文關鍵詞: Coupled-fed Patch, Single-layer Design, Millimeter Wave, Radar, Series Array, Parallel Array
相關次數: 點閱:260下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文介紹一種毫米波 (mmWave) 耦合饋入貼片天線並應用於兩個 60 GHz
雷達。
第一個雷達是標準雷達、可用於存在檢測、人員區域、手勢辨識等。 該雷
達有五根天線、包括兩根發射天線和三根接收天線(2T3R)、每根天線都有一
個並聯的二元貼片陣列。第二個雷達是電視雷達、 該雷達也有五根天線、包括
兩根發射天線和三根接收天線(2T3R)、但每根天線只有一個單元件貼片。另
外、在貼片旁邊添加了寄生貼片以提高 S11 和帶寬。
由於厚度為 4 密耳(0.1016 毫米)的 Roger 4350B (RO4350B) 用於兩個雷達
天線、並且只有兩層銅金屬可用於設計天線、因此緊湊型近距離耦合饋入由於
不需要厚基板和多層、相當適合作為提高貼片天線帶寬的饋入方法、並且具有
良好的低剖面特性。
兩款雷達均可實現從 60GHz 到 64GHz 的 4GHz 寬帶寬、並且在該頻段中水
平面(H-plane)覆蓋超過 100 度的寬可視範圍。 此外、寄生貼片不僅成功提高
了 S11 和帶寬、還提高了天線的實際增益。


This thesis presents a coupled-fed millimeter waves (mmWave) patch antenna that
is implemented into two 60 GHz radars.
The first radar is a standard radar that can be used for presence detection, person
area, gesture recognition, and so on. This radar has five antennas including two
transmitter antennas and three receiver antennas (2T3R). Each antenna has a twoelement patch array that is connected parallelly. While the second radar is a radar for
television. This radar also has five antennas including two transmitter antennas and
three receiver antennas but each antenna only has a single-element patch. In addition,
parasitic patches are added beside the patch to improve the S11 and the bandwidth.
Since Roger 4350B (RO4350B), with a thickness of 4 mils (0.1016 mm), is used
for both radars and only two copper layers can be used for designing the antennas.
Therefore, compact proximity coupled-fed is proposed as the feeding method to
enhance the bandwidth of the patch antenna since it does not require a thick substrate
and multi-layers. Moreover, it has an attractive low-profile property.
Both radars can achieve a broad bandwidth of 4 GHz from 60 to 64 GHz and cover
a wide field of view of more than 100° on the horizontal plane (H-plane) in the
frequency band. Moreover, the parasitic patch not only succeeds in improving the S11
and the bandwidth but also improves the antenna's realized gain.

摘要................................................................................................................................ I ABSTRACT..................................................................................................................II ACKNOWLEDGEMENT...........................................................................................III LIST OF CONTENT ....................................................................................................V LIST OF FIGURE.....................................................................................................VIII LIST OF TABLE..................................................................................................... XVII CHAPTER 1 INTRODUCTION...................................................................................1 1.1 Research Motivation ............................................................................................1 1.2 Research Requirements........................................................................................3 1.3 Thesis Outline ......................................................................................................3 CHAPTER 2 LITERATURE REVIEW.........................................................................5 2.1 Fundamental Parameters of Antennas..................................................................5 2.1.1 Bandwidth.....................................................................................................5 2.1.2 Gain...............................................................................................................6 2.1.3 Beamwidth ....................................................................................................7 2.2 Microstrip Antenna...............................................................................................8 2.2.1 Fringing effects.............................................................................................9 2.2.2 Design procedure ........................................................................................10 2.3 Series-Fed Array.................................................................................................12 2.4 Parallel-Fed Array ..............................................................................................12 2.5 Proximity-coupled Fed.......................................................................................13 VI 2.5.1 Working principle .......................................................................................13 2.5.2 Design procedure ........................................................................................15 2.5.3 Advantages..................................................................................................16 2.6 Parasitic Patch ....................................................................................................17 CHAPTER 3 ARRAY ANTENNA DESIGN FOR STANDARD RADAR ................19 3.1 PCB Structure for Radar ....................................................................................19 3.2 Antenna Dimension............................................................................................20 3.2.1 Patch dimension..........................................................................................24 3.2.2 Proximity coupled-fed ................................................................................24 3.2.3 Series-fed and Parallel-fed array.................................................................26 3.3 Line and Port Dimension ...................................................................................29 3.4 Simulation Results .............................................................................................33 3.4.1 Series coupled-fed array antenna ................................................................33 3.4.2 Parallel coupled-fed array antenna without crystal and capacitors.............45 3.4.3 Parallel coupled-fed array antenna with crystal and capacitors..................57 CHAPTER 4 PATCH ANTENNA DESIGN FOR TV RADAR .................................70 4.1 PCB Structure for Radar ....................................................................................70 4.2 Antenna Dimension............................................................................................71 4.2.1 Patch dimension..........................................................................................73 4.2.2 Proximity coupled-fed ................................................................................73 4.2.3 Parasitic patch .............................................................................................75 4.3 Line and Port Dimension ...................................................................................75 4.4 Simulation Results .............................................................................................76 4.4.1 Without parasitic patch ...............................................................................77 VII 4.4.2 With parasitic patch.....................................................................................88 CHAPTER 5 CONCLUSIONS ...................................................................................99 5.1 Summary ............................................................................................................99 5.2 Future Work......................................................................................................100 REFERENCES ..........................................................................................................101

[1] 10 Hui. L. 2020. Robot System for Rail Transit Applications. Hampshire,
Cambridge: Elsevier Inc.
[2] 12 Chittimoju G. and Yalavarthi U.D. 2021. A Comprehensive Review on
Milimeter-waves Applications and Antennas. The Electrochemical Society
Journal of Physics: Conference Series.
[3] 5 Zhang J.D., Zhu L., Wu Q.S., Liu N.W., and Wu W. 2016. A Compact
Microstrip-Fed Patch Antenna with Enhanced Bandwidth and Harmonic
Suppression. IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12.
[4] 9 Liu Y., Bai G. and Yagoub M.C.E. 2020. A 79 GHz Series Fed Microstrip Patch
Antenna Array with Bandwidth Enhancement and Sidelobe Suppression.
International Conference on Radar, Antenna, Microwave, Electronics, and
Telecommunications.
[5] 1 Balanis, C.A. 2005. Antenna Theory Analysis and Design, 3rd Edition. Hoboken,
New Jersey: John Wiley & Sons Inc.
[6] 2 Stutzman, W.L. and Thiele, G.A. 2013. Antenna Theory and Design, 3rd Edition.
Hoboken, New Jersey: John Wiley & Sons Inc.
[7] 11 Waterhouse R.B. 2003. Microstrip Patch Antennas: A Designer’s Guide. New
York: Springer.
[8] 4 Thuan D.V. 2018. Array Antenna Design and DSP Algorithm for 77 GHz FMCW
RADARs. Taipei: National Taiwan University of Science and Technology.
[9] 7 Iovescu C. and Rao S. 2021. The Fundamentals of Millimeter Wave Radar
Sensors. Dallas, Texas: Texas Instruments Inc.
[10] 3 Pozar D.M. 2011. Microwave Engineering, 4
th Edition. Hoboken, New Jersey:
John Wiley & Sons Inc.
[11] 6 Jang T.H., Kim H.Y., Song I.S., Lee C.J., Lee J.H., and Park C.S. 2016. A
Wideband Aperture Efficient 60 GHz Series-Fed E-Shaped Patch Antenna Array
with Copolarized Parasitic Patches. IEEE Transactions on Antennas and
Propagation, Vol. 64, No. 12.
[12] 8 Pranata T. 2014. Reflector Design for Improving the Gain of Microstrip Antenna.
Jakarta: Atma Jaya Catholic University of Indonesia

無法下載圖示 全文公開日期 2027/02/11 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE