簡易檢索 / 詳目顯示

研究生: 方健峰
JIAN-FONG FANG
論文名稱: 探討不同觸媒對成長氧化鋅奈米結構之影響
Effects of catalyst states on the growths of ZnO nanostructures:Nanorods and Nanowalls
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 黃鶯聲
Ying-Sheng Huang
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 137
中文關鍵詞: 氧化鋅奈米結構鋅蒸氣氧化法
外文關鍵詞: ZnO nanostructures, oxidizing the evaporating Zn vapor
相關次數: 點閱:254下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
鋅蒸氣氧化法具有低成本、大面積製作等優點,故本實驗利用此法合成氧化鋅奈米結構,並透過討論不同基板、觸媒以及觸媒沉積方式等條件下對氧化鋅一維奈米結構成長之影響。
實驗成長條件為使用1克之金屬鋅粉與1克的氧化鋅粉作為鋅源(上層Zn/下層ZnO),並升溫至700℃反應2小時,而載流氣體為200sccm之氮氣與10sccm之氧氣。實驗結果發現旋鍍沉積於基板之Fe觸媒在濃度為0.05M與PVA為1wt%時,再經過裂解與還原後反應所得氧化鋅奈米柱陣列性佳但線徑較粗(300-400nm);若將濃度降至0.01M經過反應則會得到直徑80nm之奈米柱但柱體表面樣貌不佳。若使用濺鍍沉積10分鐘之ZnO自身觸媒層則會成長出陣列性亦佳但稍粗直徑之奈米柱。結合以上兩種對氧化鋅奈米柱成長有幫助之觸媒組合起來而成雙層觸媒(上層旋鍍Fe0.01M、下層濺鍍10分鐘ZnO層)則能有效成長出陣列性佳、結晶性優良以及線徑為100nm以下之奈米柱。於旋鍍Fe觸媒部分,若基板後續沒經過還原處理,則直接進行鋅蒸氣氧化法成長會成長出奈米牆之結構,而牆之厚度、高度以及密度也與Fe觸媒膠體溶液濃度、PVA量有著密切之關係。
經由XRD與TEM之鑑定得知產物為結晶性佳之纖鋅礦結構ZnO材料,透過TEM之EDS分析ZnO奈米柱頂端無觸媒顆粒之存在,可判斷產物的成長機制為VSE機制。經由ZnO奈米柱之XRD與PL光譜顯示,當柱體之陣列性越佳、密度越高,XRD圖中(002)面之峰值越強烈且其他繞射峰強度相對較低以及PL光譜具有強烈之本質峰發光與微弱之缺陷峰。ZnO奈米牆之XRD與PL分析亦可確認奈米牆同樣具有高度的陣列性與單晶結晶性。最後經由PL光譜量測可證明若將反應完所得到之內部具有晶格缺陷的ZnO奈米結構進行後續700℃空氣下退火30分鐘,將能有效減少其晶格扭曲所造成之缺陷,進而提升整體ZnO奈米結構之結晶性與PL本質發光強度。


Abstract
In this study, ZnO nanostructures were synthesized by a low-cost and ease-to-mass production method by oxidizing the evaporating Zn vapor. The effects of different substrates and catalysts, catalyst states and the ways to prepare catalysts on the preparation of ZnO nanostructures were investigated.
The experimental condition for synthesizing 1-D ZnO nanostructures involved mixing 1g Zn powder and 1g ZnO powder as the reaction source (Zn/ZnO) and growing at the reaction temperature of 700℃ for 2h with a carrier gas containing 200sccm N2 and 10sccm O2. The experimental results demonstrated that highly aligned c axis-oriented 1-D ZnO rods with the diameter of 300-400sccm had been produced from the spin-coated Fe catalysts on sapphire substrates. The spin-coating solution had the concentration of 0.05M and contained 1wt%PVA. If the 1-D ZnO rods were grown with a 0.01M spin-coating solution, it would have a small diameter of 80-100 nm but a less-defined surface morphology. Highly aligned ZnO rods were also grown on the ZnO-coated sapphire substrates via rf sputtering technique. These rods had the diameter of 250-300 nm. Combining the spin-coated Fe oxide (top) and rf-sputtered ZnO (bottom) films in the bilayer laminar form, highly aligned 1-D ZnO nanorod array with good crystallinity and a small diameter (100nm) were synthesized. It is interesting to note that ZnO nanowalls were obtained on the Fe spin-coated sapphire substrates, which underwent pyrolysis to form Fe oxide on substrates and did not have a further reduction procedure. The morphologies of ZnO nanowalls were affected by the concentrations of Fe catalyst and PVA in solution.
The XRD and TEM diffraction patterns showed that the products are ZnO with wurtzite structure. There were no catalyst droplets on the tips of ZnO rods with the assistance of EDS in TEM. The growth mechanism by the VSE (Vapor-Solid-Epitaxial) process was favored for the formation of 1-D ZnO. XRD spectra showed that the diffraction of highly aligned ZnO rods had strong peak intensity in (002) but weak peaks at other diffraction planes. With better crystallinity, 1-D ZnO had a strong UV peak and weak defect emissions. XRD and PL spectra of ZnO nanowalls confirmed its ordered alignment and good crystallinity. Finally, the defective PL emissions of ZnO rods were improved by annealing at 750oC in air due to the recovery of lattice distortion by oxygen vacancies.

目錄 圖目錄……………………………………………………………………………VIII 表目錄……………………………………………………………………………XVII 第一章緒論………………………………………………………………………1 1-1前言……………………………………………………………………1 1-2氧化鋅一維材料之介紹………………………………………………2 1-3實驗研究動機…………………………………………………………3 第二章材料特性與文獻回顧……………………………………………………5 2-1氧化鋅的基本性質……………………………………………………5 2-2ZnO奈米一維材料之各種成長方法…………………………………7 2-2-1 溶液法…………………………………………………………7 2-2-2 氣相法…………………………………………………………13 第三章實驗方法與步驟………………………………………………………38 3-1實驗設備與藥品說明…………………………………………………38 3-1-1 鍍金機(電極蒸鍍機)………………………………………38 3-1-2 RF射頻磁控濺鍍機…………………………………………38 3-1-3 DC濺鍍機……………………………………………………38 3-1-4 旋轉塗佈機…………………………………………………39 3-1-5 管型加溫爐…………………………………………………40 3-1-6 實驗使用之氣體與金屬反應源……………………………41 3-1-7 其他藥品……………………………………………………42 3-2實驗流程………………………………………………………………43 3-2-1基板製備……………………………………………………43 3-2-2反應儀器示意圖與成長流程………………………………47 3-3一維材料特性分析儀器………………………………………………48 3-3-1高分析度場發射掃描式電子顯微鏡(FESEM)……………48 3-3-2穿透式電子顯微鏡(TEM)…………………………………48 3-3-3雷射螢光/光致發光光譜儀(PL)…………………………49 3-3-4X光電子繞射儀(X-ray diffraction)…………………49 第四章 結果與討論……………………………………………………………50 4-1 氧化鋅奈米結構表面形貌與顯微結構………………………………50 4-1-1不同成長基板(單一觸媒效應)………………………………50 4-1-2旋鍍參數對氧化鋅奈米結構之影響…………………………54 4-1-3 PVA濃度變化對氧化鋅奈米結構之影響……………………58 4-1-4旋鍍溶液濃度變化對氧化鋅奈米柱之影響…………………62 4-1-5 PVD法濺鍍Zn層、ZnO自身觸媒層並成長氧化鋅奈米 柱………………………………………………………………66 4-1-6 特殊觸媒基板的製備並成長氧化鋅奈米柱………………76 4-1-7 雙重觸媒對成長氧化鋅奈米柱之影響……………………77 4-1-8 特殊形態之氧化鋅奈米結構………………………………85 4-2 氧化鋅奈米結構之成長過程與機制…………………………………88 4-2-1 旋鍍Fe觸媒基板所得奈米柱之成長過程…………………88 4-2-2 氧化鋅奈米牆之成長過程…………………………………91 4-3 氧化鋅材料之XRD結構分析…………………………………………95 4-4 氧化鋅奈米結構之PL分析……………………………………………101 4-5 TEM鑑定氧化鋅奈米線結構………………………………………110 第五章結論……………………………………………………………………114 參考文獻……………………………………………………………………116

Iijima, Helical microbubules of graphitic carbon, Nature, 354, 56, 1991.

陳錫添、馮榮豐,奈米工程概論,全華科技圖書股份有限公司(2003)。

張立德、張勁燕,奈米材料(Nanomaterials),五南文化事業(2002)。

D. A. Neamen, Semiconductor Physics & Devices, 2nd ed., p105 (1992).

楊賀智,「不同成長條件與金屬反應源對成長氮化鎵奈米線之影響」,碩士論文,國立台灣科技大學,台北(2010)。

Numerical Data and Functional Relationships in Science and Technology. V. 22, Subvolume a. Intrinsic Properties of Group IV Elements and III-V, II-VI and I-VII Compounds., BerlinSpringer-Verlag, (1987).

Jih-Jen Wu, Sai-Chang Liu, J. Phys. Chem. B. 106, 9546 (2002).

Y. Chen,Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, J. Appl. Phys. 84, 3912 (1998).

A. Tsukazaki, A. Ohtomo, T. Ohnuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki. Nat. Mater. 4, 42 (2005).

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Solid State Commun. 103 ,459 (1997).

張博傑「複合觸媒對鋅蒸氣氧化法成長氧化鋅奈米線之影響」,碩士論文,國立台灣科技大學,台北(2009)。

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001).

C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, S. T. Lee, Adv. Mater 15, 838 (2003).

B. Liu, H. C. Zeng, J. Am. Chem. Soc 125, 4430 (2003).

A. B. Hartanto, X. Ning, Y. Nakata, T. Okada, Appl. Phys. A 78, 299 (2003).
M. Guo, P. Diao, S. Cai, J. Solid State Chem 178, 1864 (2005).

Tsung-Han Chen, Shih-Chin Chang, I-Nan Lin, Diamond & Related Materials 14, 774–777(2005).

Z. Q. Zhang, C. B. Jiang, S. X. Li, S. X. Mao, Journal of Crystal Growth 277, 321–329(2005).

H. Yan, J. Johnson, M. Law, R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, P. Yang, Adv. Mater 15, 1907 (2003).

Y. B. Li, Y. Bando, T. Sato, K. Kurashima, Appl. Phys. Lett 81, 144 (2002).

Jing Hui Zeng, Yong Lin Yu, Ye Feng Wang, and Tian Jun Lou, Acta Materialia 57, 1813(2009).

S. H. Kim, Ahmad Umar, Y. K. Park, E.W. Lee, Y. B. Hahn, Journal of Alloys and Compounds 479 (2009).

K. K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S. J. Park, J. H. Song, and J. Y. Lee, Journal of Vacuum Science and Technology A 18, 2864(2000).

S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R. L.
Snyder, and Z. L. Wang, Journal of the American Chemical Society 130, 14958(2008).

D. Takagi, Y. Homma, H. Hibino, S.Suzuki, Y. Kobayashi, 2006, vol.6,
No. 12, 2642-2645.

C. Li, G. Fang, J. Li, L. Ai, B. Dong, and X. Zhao, J. Phys. Chem. C(2008).

吳佳玲「一維氧化鋅奈米結構成長過程之研究」,碩士論文,國立交通大學,新竹(2004)。

Pearson’s Handbook of Crystallographic Data, 4795.

P. W. Tasker, J. Phys. C: Solid State Phys 12, 4977 (1979).

O. Dulub, U. Diebold and G. Kresse, Phys. Rev. Lett 90, 016102 (2003).
A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton and N. M. Harrison, Phys. Rev. Lett 86, 3811 (2001).
V. Staemmler, K. Fink, B. Meyer, D. Marx, M. Kunat, G. S. Gil, U. Burghaus and C. Woll, Phys. Rev. Lett 90, 106102 (2003).

A. El-Yadouni, A. Boudrioua, J. C. Loulergue, V. Sallet, R. Triboulet, Opt. Mater. 27, 1391–1395 (2005).

Y. Chen, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire Growth and characterization”, J. Appl. Phys. 84, 3912(1998).

Zikun Li, Xintang Huang, Jinping Liu, and Hanhua Ai, Materirals Letters 62, 2507(2008).

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth ” Appl. Phys. Lett, 4, 89, (1964).

G. S. Wu, T. Xie, X. Y. Yuan, Y. Li, L. Yang, Y. H. Xiao, and L. D. Zhang, Solid State Communications 134, 485(2005).

P. X. Gao, Y. Ding, and Z. L. Wang, Nano Letters, 3 [9], 1315-1320 (2003).

X. Wang, Christopher J. Summers, and Z. L. Wang, Nano letters(2004).

H. S. Shin, J. I. Sohn, D. C. Kim, Wilhelm T S Huck, Mark E Welland, H. C. Choi and D. J. Kang, Nanotechnology 20 (2009).

Wenjie Mai, Puxian Gao, Changshi Lao, Zhong Lin Wang, Ashok K. Sood, Dennis L. Polla, Martin B. Soprano, Chemical Physics Letters 460 (2008).

J. Jie, G. Wang, Q. Wang, Y. Chen, X. Han, X. Wang, and J. G. Hou, J. Phys. Chem. B (2004).

S. T. Ho, K. C. Chen, H. A. Chen, H. Y. Lin, C. Y. Cheng, and
H. N. Lin, Chem. Mater. (2007).

S. N. Cha, B. G. Song, J. E. Jang, J. E. Jung, I. T. Han, J. H. Ha,
J. P. Hong, D. J. Kang, and J. M. Kim, Nanotechnology 19 (2008).

K. Kitamura, T. Yatsui, M. Ohtsu, and G-C Yi, Nanotechnology 19 (2008).

Ahmad Umar, Caue Ribeiro, A. Al-Hajry, Y. Masuda, and Y. B. Hahn, J. Phys. Chem. C (2009).

J. Li, Q. Zhang, H. Peng, Henry O. Everitt, L. Qin, and J. Liu, J. Phys. Chem. C (2009).

Chun Li, Guojia Fang, Jun Li, Lei Ai, Binzhong Dong, and Xingzhong Zhao, J. Phys. Chem. C (2008).

Xudong Wang, Yong Ding, Zhou Li, Jinhui Song, and Zhong Lin Wang , J. Phys. Chem. C (2009).

Aleksandra B. Djurišić and Yu Hang Leung, small(2006).

鮑忠興、劉思謙,近代穿透式電子顯微鏡實務,滄海書局(2008)。

QR CODE