簡易檢索 / 詳目顯示

研究生: 郭瑋軒
Wei-Hsuan Kuo
論文名稱: 有機金屬化學氣相沈積之先驅物CuII(OCHMeCH2NEt2)2 的合成及銅薄膜的成長
The Synthesis of MOCVD Precursor CuII(OCHMeCH2NEt2)2 and Growth of Copper Thin Films
指導教授: 李嘉平
Chiapyng Lee
口試委員: 顏怡文
Yee-wen Yen
黃孟槺
Meng-Kuang Huang
李文鴻
Wen-Horng Lee
謝明燈
Ming-Deng Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 133
中文關鍵詞: 先驅物有機金屬化學氣相沈積
外文關鍵詞: Precursor, Metal-Organic Chemical Vapor Deposition, Copper
相關次數: 點閱:225下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究之目的為合成CuII(OCHMeCH2NEt2)2先驅物,並且利用此先驅物以化學氣相沈積的方法成長銅薄膜,藉由調整沈積溫度及沈積時間,探討成長出高純度且具有良好之平坦度、緻密性、連續性及低電阻值的銅薄膜之條件;同時觀察銅薄膜的初始成長狀況。
在合成先驅物CuII(OCHMeCH2NEt2)2的實驗中,首先藉由FTIR確定所合成之先驅物確實為CuII(OCHMeCH2NEt2)2且具有高純度;再藉由TGA熱分析可知此先驅物在室溫時具有良好的熱穩定性,且由TGA熱分析可找到CuII(OCHMeCH2NEt2)2的裂解溫度且證實其為相當適合作為化學氣相沈積成長銅薄膜之先驅物。
藉由調整沈積溫度及沈積時間,可以成長出高純度且具有相當良好之平坦度、緻密性、連續性及低電阻係數的銅薄膜;由研究結果發現在沈積溫度200℃,沈積時間為5分鐘時,所成長之銅薄膜具有最佳的表面型態及最低的電阻值(2.58 -cm)。並且利用此沈積條件在具有溝槽的TaNx/Si基材上成長銅薄膜,可發現銅薄膜在溝槽中的側壁及底部之階梯覆蓋情形相當良好且均勻,由以上研究結果顯示此CuII(OCHMeCH2NEt2)2先驅物可作為成長電鍍銅晶種層的先驅物。


The volatile copper(II) complex CuII(OCHMeCH2NEt2)2 was synthesized. By the use of this CuII(OCHMeCH2NEt2)2 as a MOCVD precursor, highly conductive, conformal, continuous, nonporous, and pure copper thin films were deposited at various deposition temperatures and deposition times in this study.
The successful synthesis and purity of volatile copper(II) complex CuII(OCHMeCH2NEt2)2 were characterized by FTIR. The thermal stability and decomposition temperature found by TGA made the compound a great precursor for Cu CVD.
A highly conductive, conformal, continuous, nonporous, and pure copper thin film can be deposited with proper deposition temperature and deposition time. According to experimental results, A copper thin film obtained at 200℃ and a deposition time of 5 minutes had the lowest resistivity of 2.58 -cm. A copper thin film was deposited on patterned TaNx/Si substrate at the optimal condition. The step coverage of the copper thin film on sidewall and bottom of the trench was conformal and continuous. According to these results, CuII(OCHMeCH2NEt2)2 is an excellent precursor for the deposition of Cu seed layer.

中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖索引 VI 表索引 XI 第一章 前言 1 1.1 深次微米元件金屬導線的需求 1 1.2 金屬導線材料的選擇 3 第二章 文獻回顧 7 2.1銅金屬薄膜的成長方法 7 2.2 有關晶種層之文獻回顧 11 2.3 銅先驅物之文獻回顧 13 第三章 實驗設備與程序 25 3.1 實驗設備 25 3.1.1 合成系統 25 3.1.2 磁控射頻濺鍍系統 29 3.1.3 有機金屬化學氣相沈積系統 31 3.2 實驗藥品、材料及分析儀器 38 3.2.1 實驗藥品及材料 38 3.2.2 分析儀器 40 3.3 實驗程序 43 3.3.1 先驅物CuII(OCHMeCH2NEt2)2之合成 43 3.3.2 基材TaNx薄膜之製備 48 3.3.3 化學氣相沈積成長銅薄膜 52 第四章 結果與討論 56 4.1 先驅物CuII(OCHMeCH2NEt2)2之合成及化學和熱分析 56 4.1.1 Cu(OMe)2之合成及化學分析 56 4.1.2 先驅物CuII(OCHMeCH2NEt2)2之合成及化學分析 59 4.1.3 先驅物CuII(OCHMeCH2NEt2)2之熱分析 62 4.2 化學氣相沈積成長銅薄膜 65 4.2.1 沈積溫度效應 65 4.2.2 沈積時間效應 87 4.3 階梯覆蓋率 111 第五章 結論 114 參考文獻 115 作者簡介 121

1.張俊彥及鄭晃忠,積體電路製程及設備技術手冊,pp.241 (1997)。
2.Bohr, and Mark T., Proceedings of the 1995 IEEE International Electron Devices Meeting, pp.241 (1995)
3.吳世全,毫微米通訊,第六卷,第三期,pp.38 (1999)。
4.R. Miller, Circuit Analysis Theory and Practice, Delmar Publishers, pp.42 (1995).
5.W. A. P. Claassen and J. Bloem, Journal of the Electrochemical Society, vol.128, (6), pp.1353 (1981).
6.陳錦山、黃獻慶及鄭義冠,真空科技,第十二卷,第二期,pp.26 (1999)。
7.Y. Shacham-Diamand, J. Li, J. O. Olowlafe, S. Russel, Y. Tamou and J. W. Mayer, Proceedings Ninth Biennial University / Government / Industry Microelectronics Symposium, Publ. by IEEE, Piscataway, NJ, USA, pp.210 (1991).
8.M. J. Hampden-smith and T. T. Kodas, Polyhedron, vol.14, pp.699 (1995).
9.S. Venkatesan, IEDM, pp.769 (1997).
10.D. Edelstein, IEDM, pp.936 (1997).
11.M. E. Gross, C. Lingk, W. L. Brown, and R. Drese, Solid State Technology, August, pp.47 (1999).
12.張鼎張、鄭晃忠及楊正杰,毫微米通訊,第五卷,第三期,pp.22 (1998)。
13.邱興邦,電子月刊,第四卷,pp.107 (1998)。
14.E. C. Cooney III, D. C. Strippe, and J. W. Korejwa, Journal of vacuum science and technology, A 18, pp.1550 (2000).
15.P. P. Burggraar, Solid State Technology, 43, 31 (2000).
16.R. Solanki, and B. Pathangey, Electrochemical and Solid-State Letters, vol.3, pp.479 (2000).
17.林良昌,半導體科技,pp.67 (1999)。
18.T. Kodas and M. J. Hampden-smith, The Chemistry of Metal CVD; VCH: Weinheim, (1994).
19.H.-K. Shin, M. J. Hampden-Smith, E. N. Duesler and T. T. Kodas, Polyhedron, vol.10, pp.645 (1991).
20.H.-K. Shin, K. M. Chi, J. Farkas, M. J. Hampden-Smith, T. T. Kodas and E. N. Duesler, Inorganic Chemistry, vol.31, pp.424 (1992).
21.M. J. Hampden-Smith, T. T. Kodas, M. Paffett, J. D. Farr and H.-K. Shin, Chemistry of Materials, vol.2, pp.636 (1990).
22.G. Doyle, K. A. Eriksen and D. V. Engen, Organometallics, vol.4, pp.830 (1985).
23.S. W. Rhee, S. W. Kang and S. H. Han, Electrochemical and Solid-State Letters, vol.3, pp.135 (2000).
24.C. Roger, T. S. Corbitt, M. J. Hampden-Smith and T. T. Kodas, Applied Physics Letters, vol.65, pp.1021 (1994).
25.T. Q. Cheng, K. Griffiths, P. R. Norton and R. J. Puddephatt, Applied Surface Science, vol.126, pp.303 (1998).
26.I. A. Rauf, R. Siemsen, M. Grunwell, R. F. Egerton and M. Sayer, Journal of Materials Research, vol.14, pp.4345 (1999).
27.W. J. Lee, J. S. Min, S. K. Rha, S. S. Chun, C. O. Park and D. W. Kim, Journal of Materials Science. Materials in Electronics, vol.7, pp.111 (1996).
28.A. Jain, K.-M. Chi, T. T. Kodas and M. J. Hampden-Smith, Journal of the Electrochemical Society, vol.140, pp.1434 (1993).
29.J. A. T. Norman, D. A. Roberts, A. K. Hochberg, P. Smith, G. A. Petersen, J. E. Parmeter, C. A. Apblett and T. R. Omstead, Thin Solid Films, vol.262, pp.46 (1995).
30.S. Kim, J. M. Park and D. J. Choi, Thin Solid Films, vol.320, pp.95 (1998).
31.J. Farkas, M. J. Hampden-Smith and T. T. Kodas, The Journal of Physical Chemistry, vol.98, pp.6763 (1994).
32.A. Jain, K.-M. Chi, T. T. Kodas, M. J. Hampden-Smith, J. D. Farr and M. F. Paffett, Chemistry of Materials : a Publication of the American Chemical Society, vol.3, pp.995 (1991).
33.T. H. Baum and C. E. Larson, Journal of the Electrochemical Society, vol.140, pp.154 (1993).
34.M. J. S. Dwear, Bulletin of the Chemical Society, 18 C79 (1951).
35.J. Chatt and L. A. Duncanson, Journal of the Chemical Society, vol.59, pp.2332 (1991).
36.C. H. Jun, Y. T. Kim, J. T. Baek, D. R. Kim and H. J. Yoo, Journal of vacuum science and technology A, vol.14, pp.3214 (1996).
37.A. Devi, J. Goswami, R. Lakshmi, S. A. Shivashankar and S. Chandrasekara, Journal of Materials Research, vol.13(3), pp.687 (1998).
38.Y. Chang, Materials Research Society Symposium Proceedings, vol.280, pp.649, (1993).
39.R. L. van Hemert, L. B. Spendlove and R. E. Sievers, Journal of the Electrochemical Society, vol.112, pp.1123 (1965).
40.W. G. Lai, Y. Xie, G. L. Griffin, Journal of the Electrochemical Society, vol.138, pp.3499 (1991).
41.Y. Pauleau and A. Y. Fasasi, Chemistry of Materials : a Publication of the American Chemical Society, vol.3, pp.45 (1991).
42.N. Awaya and Y. Arita, Japanese Journal of Applied Physics, vol.32, pp.3915 (1993).
43.W. S. Rees and C. R. Caballero, Advanced Materials for Optics and Electronics, vol.1, pp.59 (1992).
44.J. RÖber, S. Riedel, S. E. Schulz and T. Gessner, Microelectronic Engineering, vol.37/38, pp.111 (1997).
45.D. -H. Kim, R. H. Wentorf and W. N. Gill, Materials Research Society Symposium Proceedings, vol.260, pp.107 (1992).
46.D. -H. Kim, R. H. Wentorf and W. N. Gill, Journal of the Electrochemical Society, vol.140, pp.3273 (1993).
47.J. Pinkas, J. C. Huffman, D. V. Baxter, M. H. Chisholm and K.G. Caulton, Chemistry of Materials: a Publication of the American Chemical Society, vol.7, pp.1589 (1995).
48.N. S. Borgharkar, G. L. Griffin, A. James and A. W. Maverick, Thin Solid Films, vol.320, pp.86 (1998).
49.S. C. Goel, K. S. Kramer, M. Y. Chiang and W. E. Buhro, Polyhedron, vol.9, pp.611 (1990).
50.V. L. Young, D. F. Cox and M. E. Davis, Chemistry of Materials : a Publication of the American Chemical Society, vol.5, pp.1701 (1993).
51.J. W. Park, H. S. Jang, M. Kim, K. Sung, S. S. Lee, T.-M. Chung, S. Koo, C. G. Kim and Y. Kim, Inorganic Chemistry Communications, vol.7, pp.463 (2004).
52.R. Becker, A. Devi, J. Weiβ, U. Weckenmann, M. Winter, C. Kiener, H.-W. Becker and R. A. Fischer, Chemical Vapor Deposition, vol.9, No.3, pp.149 (2003).
53.W. A. Herrmann and A. Salzer, Synthetic Methods of Organometallic and Inorganic Chemistry, vol.1 Literature, Laboratory Techniques and Common Starting Materials, New York (1996).
54.J. V. Singh, B. P. Baranwal and R. C. Mehrotra, Zeitschrift für Anorganische und Allgemeine Chemie, vol.477, pp.235 (1981).
55.S. C. Goel and W. E. Buhro, Inorganic Syntheses, vol.31, pp.294 (1997).
56.S. Wang, Journal of Cluster Science, vol.6, No.4, pp.463 (1995).
57.J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Physical Electronics, Inc., (1995).
58.P. D. Kirsch, and J. G. Ekerdt, Journal of Applied Physics, vol.90, pp.4256 (2001).
59.B. D. Culllity, Elements of X-ray Diffraction, Addison-Wesley Pub., London, (1978).
60.D. B. Knorr, D. P. Tracy and K. P. Rodbell, Applied Physics Letters, vol.59, pp.3241 (1986).

QR CODE