簡易檢索 / 詳目顯示

研究生: 胡曉峯
Hsiao-Feng Hu
論文名稱: 利用雷射杜卜勒血流訊號分析應用於糖尿病早期偵測及調控機制探討研究
Using laser-Doppler flowmeter measurements and signal analysis to study different microcirculatory effect in diabetic and prediabetic subjects.
指導教授: 許昕
Hsin Hsiu
口試委員: 廖愛禾
Ai-Ho Liao
許維君
Wei-Chun Hsu
趙品尊
Pin-tsun Chao
許家良
Chia-Liang Hsu
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 95
中文關鍵詞: 糖尿病糖尿病前期脈波複雜度雷射杜卜勒微循環頻域分析
外文關鍵詞: Diabetes, Prediabetes, beat-to-beat waveform, complexity, laser Doppler, microcirculation, spectral analysis
相關次數: 點閱:286下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 動機:
    糖尿病是一種高盛行率疾病,造成許多大血管與小血管病變的慢性併發症,並與心臟血管疾病死亡關係密切,糖尿病及其併發症嚴重危害國人健康,同時也造成醫療費用的沉重負擔,因此本研究目的為利用雷射杜卜勒血流訊號分析 (時域、複雜度及頻域分析) 之各項參數,探討因糖尿病或糖尿病前期造成生理及調控活動改變現象,希望研究結果有助於發展糖尿病早期偵測及臨床療效評估指標。
    方法:
    本研究由新陳代謝科門診疑似糖尿病病人中招募受試者,配合「口服葡萄糖水耐受試驗(OGTT)」的流程,進行雷射杜卜勒微流儀非侵入式量測,依據OGTT結果,將受試者分為糖尿病 (Group A)、糖尿病前期 (Group B)及正常(Group C) 三組,分別將雷射杜卜勒血流訊號進行時域、複雜度(ApEn)及頻域分析,計算出各式參數以探討因糖尿病或糖尿病前期造成生理及調控活動改變現象。
    結果與討論:
    本研究發現如下:
    (1).時域分析: 發現時域參數 FDT(Foot Delay Time)、FRT(Foot Raising Time),在糖尿病或糖尿病前期組較正常人組顯著下降,而FDT_CV、FRT_CV顯著上升,此參數可幫助瞭解因糖尿病造成微循環血流及血管特性改變。
    (2).複雜度分析: 發現時域參數AD (pulse-to-mean ratio)和PW (Pulse Width)之ApEn (approximate entropy) 值在糖尿病顯著或接近顯著上升,而AD和PW值在三組間無顯著差異,此參數可反應體內為維持生理恆定而活化生理調控機制的現象,因此ApEn值可以比時域參數更早被偵測,幫助建立糖尿病早期偵測指標。
    (3).頻域分析: 發現第一至第三頻帶 (FR1~FR3)的相對能量比例值 (REC)在糖尿病或糖尿病前期皆較正常人顯著下降且呈逐漸遞減趨勢,此參數有助於進一步探討調控機制發生的可能機轉,並幫助發展糖尿病早期偵測及及療效評估指標。
    結論:
    本研究利用雷射杜卜勒血流訊號分析等非侵入式量測評估方式,應用於糖尿病或糖尿病前期產生結構性、功能性及調控活動改變的現象,有助於發展糖尿病早期偵測及臨床療效評估指標,達成「早期偵測、早期治療」目標,不僅可提升國人健康狀況,減少醫療支出,更可以有效避免或延緩併發症發生,提升國人生活品質,進一步做為未來發展居家照護及遠距醫療基礎。


    Motivations:
    Diabetes mellitus is a high prevalence disease and can increase cardiovascular mortality . It is well established that diabetes can lead to both micro- and macrovascular complications, and it seriously endangers people's health. The aim of this study was using signal analysis of skin-surface laser doppler signals to investigate pathological changes and microcirculatory regulatory mechanisms caused by diabetic or prediabetic state. The findings might aid in the development of new noninvasive methods for the early detection of diabetes and for monitoring disease progression.

    Methods:
    The experimental design of the present study employed the oral glucose tolerance test (OGTT) to assign the subjects into three groups (diabetic, prediabetic, and normal groups) for investigating pathological changes and the regulatory mechanisms underlying these different states. Laser Doppler flowmetry(LDF) signals were analyzed by time-domain, frequency-domain and complexity analysis methods.
    Results and Discussion:
    Findings from our study are summarized below:
    (1).Time-domain analysis: Relative to the normal group, FDT(Foot Delay Time) and FRT(Foot Raising Time) were significantly shorter in prediabetic group, FDT was significantly shorter in diabetic group, and FRTCV and FDTCV were significantly larger in prediabetic and diabetic groups. The present results may help to discriminate differences in the elastic properties of local vascular beds during diabetes or even during prediabetic stages.
    (2).Complexity analysis: AD(pulse-to-mean ratio) and PW(Pulse Width) did not differ significant among diabetic, prediabetic, and normoglycemic groups. ApEn(approximate entropy) values of AD and PW were significantly larger and marginally larger in the diabetic group than in the prediabetic and normoglycemic groups. The presence of increased complexity in the LDF index sequence may be partly attributed to the adaptability of the microcirculatory regulatory activities or the impairment of the homeostasis mechanism of microcirculatory-blood-flow perfusion. The present findings may aid in the development of an index for early detection of prediabetes.
    (3).Frequency-domain analysis: The relative energy contribution (REC) of 1st frequency band (FR1) was significantly smaller in diabetic subjects than in normal subjects. The REC of 2nd to 3rd frequency bands (FR2–FR3) were significantly smaller in diabetic and prediabetic groups than in normal group. The REC of FR1–FR3 from normal to prediabetic and diabetic groups showed a progressive decrease. The present findings may help to identify the microcirculatory regulatory mechanisms and aid in the development of a noninvasive method for the early detection of prediabetes and the monitoring of disease progression.
    Conclusion:
    The present findings can help to identify structural, functional changes and the different microcirculatory regulatory mechanisms in diabetes and prediabetes by applying signal analysis to the LDF signals. The present findings may aid in the development of a noninvasive method for the early detection of prediabetes and the monitoring of disease progression. This could be clinically useful in preventing disease progression and reducing the risk of concomitant end-organ damage. In the future, it is hoped that the present technique can reduce medical costs and be used in the development of home-care and telemedicine applications.

    目錄 中文摘要 I ABSTRACT IIIII 誌謝 V 目錄 VI 圖索引 IX 表索引 XI 第一章 緒論 1 1.1. 研究背景 1 1.1.1. 糖尿病的威脅及併發症 1 1.1.2. 糖尿病、糖尿病前期及併發症診斷方式 3 1.1.3. 糖尿病前期及糖尿病的病情進展 4 1.1.4. 糖尿病及糖尿病前期現今治療方式與療效評估 5 1.1.5. 雷射杜卜勒微流儀 6 1.1.6. 時域分析及微循環理論介紹 8 1.1.7. 血流量的複雜度分析 10 1.1.8. 頻域分析及各頻帶生理調控機制介紹 12 1.2. 研究動機與目的 13 第二章 實驗方法 15 2.1. 硬體配置示意圖 15 2.2. 實驗儀器說明 16 2.2.1. 生理訊號放大器-心電圖 16 2.2.2. 雷射杜卜勒微流儀 17 2.2.3. 訊號連接器 19 2.2.4. 類比數位轉換卡 20 2.3. 雷射杜卜勒微流儀 (LDF) 量測位置考量 21 2.4. 實驗設計與流程步驟 22 2.4.1. 實驗設計 22 2.4.2. 實驗流程與步驟 24 2.5. 微循環血流訊號分析 27 2.5.1. 訊號分析流程 27 2.5.2. LDF時域參數 28 2.5.3. 複雜度分析 (approximate entropy, ApEn) 34 2.5.4. LDF頻域參數 35 第三章 時域參數實驗結果與討論 38 3.1. 糖尿病、糖尿病前期及正常人組的基本生理資料比較表 38 3.2. 糖尿病、糖尿病前期及正常人組的時域參數比較 40 3.3. 年齡和性別對時域參數複迴歸分析 41 3.4. 時域參數討論 42 3.4.1. 微循環理論 42 3.4.2. 糖尿病引發時域參數改變 43 3.4.3. FDT參數討論 44 3.4.4. FRT參數討論 45 3.4.5. FDT_CV、FRT_CV參數討論 46 3.4.6. 研究限制 47 3.4.7. 時域參數未來應用與展望 49 第四章 複雜度分析實驗結果與討論 50 4.1. 糖尿病、糖尿病前期及正常人組的基本生理資料比較表 50 4.2. 糖尿病、糖尿病前期及正常人組AD和PW複雜度分析比較 52 4.3. 糖尿病、糖尿病前期及正常人組的AD和PW參數比較 53 4.4. AD和其複雜度分析值 (APEN_AD) 之散佈圖 54 4.5. 複雜度分析 (APEN) 討論 55 4.5.1. 在糖尿病之生理意義及應用 55 4.5.2. 時域參數AD及PW之生理意義 56 4.5.3. 本研究結果ApEn討論與未來展望 57 第五章 頻域參數實驗結果與討論 59 5.1. 糖尿病、糖尿病前期及正常人組的基本生理資料比較表 59 5.2. 糖尿病、糖尿病前期及正常人組的頻域參數比較 60 5.3. 年齡與血壓在五個頻帶間之複迴歸分析表 61 5.4. 年齡與第二頻帶之REC迴歸分析圖 63 5.5. 頻域參數討論 64 5.5.1. 糖尿病引發頻域參數改變 64 5.5.2. 第一頻帶 (FR1) 討論 65 5.5.3. 第二頻帶 (FR2) 討論 66 5.5.4. 第三頻帶 (FR3) 討論 67 5.5.5. 未來應用與展望 69 第六章 總結及未來展望 71 REFERENCE 73

    1.International Diabetes Federation. IDF Diabetes Atlas, 7th edn. 2015. Brussels, Belgium: International Diabetes Federation. .
    2.Wei JN, Sung FC, Lin CC, Lin RS, Chiang CC et al (2003) National surveillance for type 2 diabetes mellitus in Taiwanese children. Jama 290:1345-1350
    3.曾慶孝 (2000) 糖尿病的大血管病變. 中華民國內分泌暨糖尿病學會會訊
    13:8-18
    4.傅振宗, 陳慕師, 陳冰虹, 戴東原 (1997) 糖尿病的小血管病變. 台灣醫學 1:165-175
    5.(2010) Diagnosis and classification of diabetes mellitus. Diabetes care 33 Suppl 1:S62-69
    6.Association AD (2013) Standards of medical care in diabetes—2013. Diabetes care 36:S11
    7.American Diabetes A (2014) Standards of medical care in diabetes--2014. Diabetes care 37 Suppl 1:S14-80
    8.Bansal N (2015) Prediabetes diagnosis and treatment: A review. World journal of diabetes 6:296-303
    9.Control CfD, Prevention (2014) National diabetes statistics report: estimates of diabetes and its burden in the United States, 2014. Atlanta, GA: US Department of Health and Human Services
    10.DeFronzo RA, Abdul-Ghani M (2011) Assessment and treatment of cardiovascular risk in prediabetes: Impaired glucose tolerance and impaired fasting glucose. American Journal of Cardiology 108:3B-24B
    11.林世崇 (2010) 糖尿病治療的新策略. 臺灣醫界 53:458-465
    12.沈德昌, 顏兆熊 (2009) 糖尿病前期. 臺灣醫界 52:20-23
    13.Chao CYL, Cheing GLY (2009) Microvascular dysfunction in diabetic foot disease and ulceration. Diabetes-Metabolism Research and Reviews 25:604-614
    14.Koscielny J, Latza R, Wolf S, Kiesewetter H, Jung F (1998) Early rheological and microcirculatory changes in children with type I diabetes mellitus. Clinical hemorheology and microcirculation 19:139-150
    15.Yvonne-Tee GB, Rasool AH, Halim AS, Rahman AR (2006) Noninvasive assessment of cutaneous vascular function in vivo using capillaroscopy, plethysmography and laser-Doppler instruments: its strengths and weaknesses. Clinical hemorheology and microcirculation 34:457-473
    16.Khan F, Elhadd TA, Greene SA, Belch JJ (2000) Impaired skin microvascular function in children, adolescents, and young adults with type 1 diabetes. Diabetes care 23:215-220
    17.Ryden L, Grant PJ, Anker SD, Berne C, Cosentino F et al (2013) ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). European heart journal 34:3035-3087
    18.Milnor WR (1982) Hemodynamics.
    19.Chao PT, Jan MY, Hsiu H, Hsu TL, Wang WK et al (2006) Evaluating microcirculation by pulsatile laser Doppler signal. Physics in medicine and biology 51:845-854
    20.Hsiu H, Huang SM, Chen CT, Hsu CL, Hsu WC (2011) Acupuncture stimulation causes bilaterally different microcirculatory effects in stroke patients. Microvascular research 81:289-294
    21.Hsiu H, Huang SM, Hsu TL (2010) Evaluation of the function of arteriolar opening by variability in microcirculatory blood flow following angiotensin II administration in rats. Biorheology 47:239-253
    22.Shin JY, Lee HR, Lee DC (2011) Increased arterial stiffness in healthy subjects with high-normal glucose levels and in subjects with pre-diabetes. Cardiovascular diabetology 10:30
    23.Hsiu H, Hsu CL, Jan MY (2010) Relations between beat-to-beat microcirculatory blood flow and variations therein. Photomedicine and laser surgery 28:785-792
    24.Pincus SM (1991) Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America 88:2297-2301
    25.Pincus S (1995) Approximate entropy (ApEn) as a complexity measure. Chaos (Woodbury, NY) 5:110-117
    26.Yue WS, Lau KK, Siu CW, Wang M, Yan GH et al (2011) Impact of glycemic control on circulating endothelial progenitor cells and arterial stiffness in patients with type 2 diabetes mellitus. Cardiovascular diabetology 10:113
    27.Eringa EC, Serne EH, Meijer RI, Schalkwijk CG, Houben AJ et al (2013) Endothelial dysfunction in (pre)diabetes: characteristics, causative mechanisms and pathogenic role in type 2 diabetes. Reviews in endocrine & metabolic disorders 14:39-48
    28.Hsiu H, Hsu WC, Wu YF, Hsu CL, Chen CY (2014) Differences in the skin-surface laser Doppler signals between polycystic ovary syndrome and normal subjects. Microcirculation (New York, NY : 1994) 21:124-130
    29.Sun PC, Chen CS, Kuo CD, Lin HD, Chan RC et al (2012) Impaired microvascular flow motion in subclinical diabetic feet with sudomotor dysfunction. Microvascular research 83:243-248
    30.Stefanovska A, Bracic M, Kvernmo HD (1999) Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE transactions on bio-medical engineering 46:1230-1239
    31.Kvandal P, Landsverk SA, Bernjak A, Stefanovska A, Kvernmo HD et al (2006) Low-frequency oscillations of the laser Doppler perfusion signal in human skin. Microvascular research 72:120-127
    32.Singh JP, Larson MG, O'Donnell CJ, Wilson PF, Tsuji H et al (2000) Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). The American journal of cardiology 86:309-312
    33.Gerritsen J, Dekker JM, TenVoorde BJ, Bertelsmann FW, Kostense PJ et al (2000) Glucose tolerance and other determinants of cardiovascular autonomic function: the Hoorn Study. Diabetologia 43:561-570
    34.Hoffman-Snyder C, Smith BE, Ross MA, Hernandez J, Bosch EP (2006) Value of the oral glucose tolerance test in the evaluation of chronic idiopathic axonal polyneuropathy. Archives of neurology 63:1075-1079
    35.Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M (2003) The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology 60:108-111
    36.Hsiu H, Chao PT, Hsu WC, Jan MY, Wang YY et al (2008) The possible role of arterial radial vibration in heart rate and blood pressure matching. Proceedings of the Institution of Mechanical Engineers Part H, Journal of engineering in medicine 222:773-779
    37.Hsiu H, Hsu CL, Chiang WR, Chao PT, Hsu TL et al (2008) Connection between RR-interval length and the pulsatile microcirculatory flow. Physiological measurement 29:245-254
    38.Hsiu H, Hsu WC, Hsu CL, Bau JG, Chen CT et al (2013) Complexity analysis of the microcirculatory-blood-flow response following acupuncture stimulation. Microvascular research 89:34-39
    39.Hsiu H, Hsu WC, Hsu CL, Huang SM (2011) Assessing the effects of acupuncture by comparing needling the hegu acupoint and needling nearby nonacupoints by spectral analysis of microcirculatory laser Doppler signals. Evidence-based complementary and alternative medicine : eCAM 2011:435928
    40.林家瑋. 循環功能整合評估系統應用於代謝症候群之初步研究. 台北市: 醫學工程研究所, 國立臺灣科技大學; 2013.
    41.Vinik AI, Erbas T, Park TS, Pierce KK, Stansberry KB (2001) Methods for evaluation of peripheral neurovascular dysfunction. Diabetes technology & therapeutics 3:29-50
    42.吳冠賢. 雷射都卜勒血流時域與頻域分析應用於糖尿病之指標開發研究. 台北市: 醫學工程研究所, 國立臺灣科技大學; 2012.
    43.陳冠彰. 循環訊號量測應用於乳癌患者病程監控之研究. 台北市: 醫學工程研究所, 國立臺灣科技大學; 2016.
    44.Hsiu H, Hu HF, Wu GS, Hsiao FC (2014) Characteristics in the beat-to-beat laser-Doppler waveform indices in subjects with diabetes. Clinical hemorheology and microcirculation 57:375-384
    45.Wei CC, Huang SW, Bau CT (2012) Using the spring constant method to analyze arterial elasticity in type 2 diabetic patients. Cardiovascular diabetology 11:39
    46.Singh RB, Cornelissen G, Weydahl A, Schwartzkopff O, Katinas G et al (2003) Circadian heart rate and blood pressure variability considered for research and patient care. International journal of cardiology 87:9-28; discussion 29-30
    47.Abhishekh HA, Nisarga P, Kisan R, Meghana A, Chandran S et al (2013) Influence of age and gender on autonomic regulation of heart. Journal of clinical monitoring and computing 27:259-264
    48.Tigno XT, Hansen BC, Nawang S, Shamekh R, Albano AM (2011) Vasomotion becomes less random as diabetes progresses in monkeys. Microcirculation (New York, NY : 1994) 18:429-439
    49.Short KR, Blackett PR, Gardner AW, Copeland KC (2009) Vascular health in children and adolescents: effects of obesity and diabetes. Vascular health and risk management 5:973-990
    50.Hsiu H, Huang SM, Chen CT, Hsu WC, Lin FC (2014) Differences in the beat-to-beat parameters of skin-surface pulsatile laser-Doppler waveforms between stroke and normal subjects. Clinical hemorheology and microcirculation 58:353-362
    51.Hsiu H, Hsu WC, Hsu CL, Lin WC, Ho MH et al (2012) Acute microcirculatory responses induced by skin-surface vibration stimulation at a frequency near the heart rate. Biorheology 49:15-25
    52.Ding H, Triggle CR (2010) Endothelial dysfunction in diabetes: multiple targets for treatment. Pflugers Archiv : European journal of physiology 459:977-994
    53.Valenta I, Dilsizian V, Quercioli A, Schelbert HR, Schindler TH (2012) The influence of insulin resistance, obesity, and diabetes mellitus on vascular tone and myocardial blood flow. Current cardiology reports 14:217-225
    54.Vessieres E, Freidja ML, Loufrani L, Fassot C, Henrion D (2012) Flow (shear stress)-mediated remodeling of resistance arteries in diabetes. Vascular pharmacology 57:173-178
    55.Orasanu G, Plutzky J (2009) The pathologic continuum of diabetic vascular disease. Journal of the American College of Cardiology 53:S35-42
    56.Wiernsperger NF (2001) In defense of microvascular constriction in diabetes. Clinical hemorheology and microcirculation 25:55-62
    57.Wiernsperger NF, Bouskela E (2003) Microcirculation in insulin resistance and diabetes: more than just a complication. Diabetes & metabolism 29:6s77-87
    58.Vinik AI, Erbas T, Park TS, Stansberry KB, Scanelli JA et al (2001) Dermal neurovascular dysfunction in type 2 diabetes. Diabetes care 24:1468-1475
    59.Hayden MR, Sowers JR, Tyagi SC (2005) The central role of vascular extracellular matrix and basement membrane remodeling in metabolic syndrome and type 2 diabetes: the matrix preloaded. Cardiovascular diabetology 4:9
    60.Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England journal of medicine 346:393-403
    61.Avogaro A, Fadini GP, Gallo A, Pagnin E, de Kreutzenberg S (2006) Endothelial dysfunction in type 2 diabetes mellitus. Nutrition, metabolism, and cardiovascular diseases : NMCD 16 Suppl 1:S39-45
    62.Maschirow L, Khalaf K, Al-Aubaidy HA, Jelinek HF (2015) Inflammation, coagulation, endothelial dysfunction and oxidative stress in prediabetes--Biomarkers as a possible tool for early disease detection for rural screening. Clinical biochemistry 48:581-585
    63.Hadi HA, Suwaidi JA (2007) Endothelial dysfunction in diabetes mellitus. Vascular health and risk management 3:853-876
    64.Avogaro A, de Kreutzenberg SV, Fadini G (2008) Endothelial dysfunction: causes and consequences in patients with diabetes mellitus. Diabetes research and clinical practice 82 Suppl 2:S94-s101
    65.Jeffcoate WJ, Harding KG (2003) Diabetic foot ulcers. Lancet 361:1545-1551
    66.Caselli A, Rich J, Hanane T, Uccioli L, Veves A (2003) Role of C-nociceptive fibers in the nerve axon reflex-related vasodilation in diabetes. Neurology 60:297-300
    67.Arora S, Pomposelli F, LoGerfo FW, Veves A (2002) Cutaneous microcirculation in the neuropathic diabetic foot improves significantly but not completely after successful lower extremity revascularization. Journal of vascular surgery 35:501-505
    68.Yosipovitch G, Schneiderman J, van Dyk DJ, Chetrit A, Milo G et al (1996) Impairment of the postural venoarteriolar response in young type 1 diabetic patients. A study by laser doppler flowmetry. Angiology 47:687-691
    69.Belcaro G, Nicolaides AN (1991) The venoarteriolar response in diabetics. Angiology 42:827-835
    70.Iwase M, Imoto H, Murata A, Nakamura U, Nohara S et al (2007) Altered postural regulation of foot skin oxygenation and blood flow in patients with type 2 diabetes mellitus. Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association 115:444-447
    71.Siperstein MD, Unger RH, Madison LL (1968) Studies of muscle capillary basement membranes in normal subjects, diabetic, and prediabetic patients. The Journal of clinical investigation 47:1973-1999
    72.Sheetz MJ, King GL (2002) Molecular understanding of hyperglycemia's adverse effects for diabetic complications. Jama 288:2579-2588
    73.Jaap AJ, Hammersley MS, Shore AC, Tooke JE (1994) Reduced microvascular hyperaemia in subjects at risk of developing type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 37:214-216
    74.Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR et al (2007) Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes care 30:753-759
    75.Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M (2012) Prediabetes: a high-risk state for diabetes development. Lancet 379:2279-2290
    76.Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ et al (2009) 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 374:1677-1686

    無法下載圖示 全文公開日期 2022/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE