簡易檢索 / 詳目顯示

研究生: 蔡嘉珉
Jia-Min Tsai
論文名稱: 震動覺回饋手套系統設計與中風病患的復健成效探討
A Vibrotactile Glove Design and its Rehabilitation Effects on Hand Function in Stroke Patients
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 林燕慧
none
郭重顯
Chung-Hsien Kuo
許維君
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 75
中文關鍵詞: 中風患者手部復健震動覺回饋手指靈活度
外文關鍵詞: Stroke patients, Hand rehabilitation, Vibrotactile feedback, sFinger Dexterity.
相關次數: 點閱:175下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究旨在探討應用虛擬實境與震動覺回饋於中風患者手指靈活度之復健成效改善。吾人開發一個可攜式的震動覺回饋手套,搭配打地鼠以及敲音符遊戲的虛擬實境端,誘發患者直覺式敲壓行為來達到復健的目的。此系統的特點為藉由裝配震動馬達提示患者手指如何施力,並以力量感測器量測患者每次的手指力道,記錄每次力量以評估患者的改善情況。本研究與台北馬偕醫院復健科的物理治療師合作進行相關臨床實驗,並請所招募的中風患者穿戴本研究所設計之震動覺回饋手套,探討比較有、無震動覺的成效差異以及重複復健練習手部能力的差異,實驗結果證實使用震動刺激患側可增加患者的反應速度。


This study aims to develop a fine motor training glove that integrate a virtual re-ality based interactive environment with vibrotactile feedback for more effective post stroke hand rehabilitation. The proposed haptic rehabilitation device is equipped with small DC vibration motors for vibrotactile feedback stimulation and piezoresistive thin-film pressure sensors for motor function evaluation. Two virtual- reality based games, “gopher hitting” and “musical note hitting”, were developed as a haptic inter-face. According to the designed rehabilitation program, patients intuitively push and practice their fingers to improve the finger isolation function. This study has been cooperated with the physical therapists in Taipei MacKay Memorial Hospital for clin-ical trials. The recruited stroke patients were asked to wear our developed vibrotactile glove for a series of clinical tests. This study specifically discusses the effectiveness of adding vibrotactile feedback and the efficiency of repeated hand rehabilitation. The experiments confirm that giving vibration stimulations at the affected side can in-crease the reaction response of stroke patients.

摘要I AbstractⅡ 致謝Ⅲ 目錄Ⅳ 圖目錄Ⅶ 表目錄XI 第一章緒論………………………………………………………………………1 第二章系統架設 2.1 硬體架構7 2.1.1 筆記型電腦7 2.1.2 力量感知器8 2.1.3 可調式磁板9 2.1.4 震動馬達9 2.1.5 微處理器10 2.1.6 揚聲器11 2.2 軟體架構11 2.2.1 V-Realm Builder11 2.2.2 MATLAB Simulink11 2.2.3 Real-Time Windows Target toolbox14 2.2.4 Simulink 3D Animation toolbox14 第三章虛擬環境開發 3.1 虛擬環境建置15 3.1.1 打地鼠遊戲15 3.1.2 敲音符遊戲16 3.2 硬體與虛擬環境的連結17 3.2.1 Arduino Uno資料傳遞17 3.2.2 Simulink資料傳遞18 第四章震動覺回饋系統設計 4.1 復健動作設計19 4.2 震動覺回饋系統設計22 4.2.1 震動馬達的選用23 4.2.2 震動馬達的擺放24 4.2.3 力量感知器的選用24 4.2.4 力量感知器校正25 4.2.5 力量感知器的擺放26 4.2.6 資料控制盒27 4.2.7 揚聲器28 4.3 臨床實驗30 4.3.1 臨床實驗流程介紹30 4.3.2 實際臨床實驗操作步驟介紹31 第五章實驗結果 5.1 受試者35 5.2 實驗一:有無震動覺對於復健的影響35 5.2.1 研究目的36 5.2.2 實驗設計36 5.2.3 分析方式37 5.2.4 結果37 5.3 實驗二:重複訓練對於復健的差異39 5.3.1 研究目的39 5.3.2 實驗設計39 5.3.3 分析方式39 5.3.4 結果40 5.4 問卷結果52 第六章結論與未來發展 6.1 結論54 6.2 建議與未來發展55 參考文獻 附錄

[1] “台灣腦中風學會第十五卷第三期, ” http://www.stroke.org.tw/about.asp
[2] Y. Cao, L. D’Olhaberriague, E. M. Vikingstad, S. R. Levine, K. M. Welch, “Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis,” Stroke, Vol. 29, pp. 112-122, 1998.
[3] “復健遊戲系統, ” http://rgs-project.eu/system-overview
[4] “SeeMe系統, ” http://tw.bysources.com/themes/hcp/news/news_show.php?recno=3424&sup_no=134989
[5] 陳宇榛, “復健機融合虛擬遊戲方案對腦性麻痺兒童上肢動作之訓練成效,” 國立新竹教育大學特殊教育學系碩士論文, 2010.
[6] M. da Silva Cameirão, S. Bermúdez i Badia, E. Duarte, P. F. Verschure, “Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system,"Restorative neurology and neuroscience, pp. 287-298, 2011.
[7] A. Alamri, M. Eid, R. Iglesias, S. Shirmohammadi, A. El Saddik, “Occupational therapists’ evaluation of haptic motor rehabilitation,” Engineering in Medicine and Biology Society, pp. 4763-4766, 2007.
[8] M. Sivak, O. Unluhisarcikli, B. Weinberg, A. Mirelman-Harari, P. Bonato and C. Mavroidis, “Haptic system for hand rehabilitation integrating an interactive game with an advanced robotic device,” Haptics Symposium, Waltham, MA, Mar 25-26, 2010, pp. 475-481.
[9] U. Feintuch, L. Raz, J. Hwang, N. Josman, N. Katz, R. Kizony, D. Rand, A.S. Rizzo, M. Shahar, J. Yongseok, P.L. Weiss, “Integrating haptic-tactile feedback into a video-capture-based virtual environment for rehabilitation,"CyberPsychology & Behavior, pp.129-132, 2006.
[10] P. Khanna, R. Irwin, P. Kapur, S. A. Jax, L. J. Buxbaum and K. J. Kuchenbecker, “Lessons in using vibrotactile feedback to guide fast arm motions,"IEEE World Haptics Conference, pp. 355-360, 2011.
[11] A. Causo, L.D. Tran, S.H. Yeo, I.M. Chen, “Vibrotactile motors on stationary arm as directional feedback to correct arm posture,"IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 202-207, 2012.
[12] L. Jiang, M. R. Cutkosky, J. Ruutiainen and R. Raisamo, “Improving finger force control with vibrational haptic feedback for multiple sclerosis,” Proceedings of the IASTED International Conference on Telehealth/Assistive Technologies, pp. 110-115, 2008.
[13] N. Ramakrishnan, K. Huang, T. Starner, M. Eicholtz, S. Garrett, H. Profita, A. Scarlata, C. Schooler, A. Tarun and D. Backus, “Mobile Music Touch: Vibration stimulus in hand rehabilitation,” Pervasive Computing Technologies for Healthcare, pp. 1-8, 2010.
[14] C. Rosado and L. Simone, “Translational haptic feedback for post-stroke rehabil-itation,” Bioengineering Conference, Long Island, NY, Mar 10-11, 2007, pp. 259-260.
[15] J. Lieberman and C. Breazeal, “TIKL: Development of a wearable vibrotactile feedback suit for improved human motor learning,” Robotics, Vol. 23, No. 5, pp. 919-926, 2007
[16] P. Kapur, M. Jensen, L. J. Buxbaum, S. Jax and K. J. Kuchenbecker, “Spatially distributed tactile feedback for kinesthetic motion guidance,” Haptics Symposi-um, Waltham, MA, Mar 25-26, 2010, pp. 519-526.
[17] M. Ferre, I. Galiana, R. Wirz and N. Tuttle, “Haptic device for capturing and simulating hand manipulation rehabilitation,” Mechatronics, Vol. 16, No. 5, pp. 808-815, 2011.
[18] M. McLaughlin, A. Rizzo, Y. Jung, W. Peng, S. Yeh and W. Zhu, “Hap-tics-enhanced virtual environments for stroke rehabilitation,” IPSI, 2005.
[19] 許惠雯, “中風病人復健系統建置,” 私立龍華科技大學電機工程研究所碩士論文, 2011.
[20] 辛柏陞, “虛擬實境手部功能訓練系統之設計開發與成效探討之研究,” 國立中央大學機械工程研究所博士論文, 2004
[21] K. O. Thielbar, T. J. Lord, H. C. Fischer, E. C. Lazzaro, K. C. Barth, M. E. Stoykov and D. G. Kamper, “Training finger individuation with a mechatron-ic-virtual reality system leads to improved fine motor control post-stroke,” Journal of neuroengineering and rehabilitation, Vol. 11, pp. 171, 2014.
[22] R. F. Boian, J. E. Deutsch, C. S. Lee, G. C. Burdea and J. Lewis, “Haptic effects for virtual reality-based post-stroke rehabilitation,” Haptic Interfaces for Virtual Environment and Teleoperator Systems, Los Angeles, CA, USA, Mar 22-23, 2003, pp. 2003.
[23] R. Loureiro, F. Amirabdollahian, S. Coote, E. Stokes and W. Harwin, “Using haptics technology to deliver motivational therapies in stroke patients: Concepts and initial pilot studies,” Proceedings of EuroHaptics, Vol. 2001, 2001.
[24] J. Furusho, C. Li, Y. Yamaguchi, S. Kimura, K. Nakayama, T. Katuragi and A. Inoue, “A 6-DOF rehabilitation machine for upper limbs including wrists using ER actuators,” Mechatronics and Automation, Vol. 2, pp. 1033-1038, 2008.
[25] S. C. Yeh, A. Rizzo, W. Zhu, J. Stewart, M. McLaughlin, I. Cohen and W. Peng, “An integrated system: virtual reality, haptics and modern sensing technique (VHS) for post-stroke rehabilitation,” Proceedings of the ACM symposium on Virtual reality software and technology, pp. 59-62, 2005.
[26] 方學濬, “結合體感遊戲的中風患者之居家復健系統,” 淡江大學電機工程學系碩士論文, 2012
[27] L. Connelly, M. E. Stoykov, Y. Jia, M.L. Toro, R.V. Kenyon and D.G. Kamper, “Use of a pneumatic glove for hand rehabilitation following stroke,” Engineering in Medicine and Biology Society, pp. 2434-2437, 2009.
[28] L. K. Simone, N. Sundarrajan, X. Luo, Y. Jia and D. G. Kamper, “A low cost instrumented glove for extended monitoring and functional hand assessment,” Journal of neuroscience methods, Vol. 160, NO. 2, pp. 335-348, 2007.
[29] T. J. Lord, D. M. Keefe, Yu Li, N. Stoykov and D. Kamper, “Development of a haptic keypad for training finger individuation after stroke,” Virtual Rehabilita-tion, Zurich, Switzerland, EU, June 27-29, 2011, pp.1-2.
[30] “力量感知器,” https://www.tekscan.com/product-group/embedded-sensing/force-sensors?tab=products-solutions
[31] “PRECISION MICRODRIVES Vibration motor,” http://www.precisionmicrodrives.com/vibrating-vibrator-vibration-motors/vibration-motor-ranges/pico-vibe-range
[32] “Arduion Uno,” https://www.arduino.cc/en/Main/arduinoBoardUno
[33] “Brunnstrom stage,” http://blog.xuite.net/wdt5861/twblog/130104774
[34] “Range of Motion,” http://www.geocities.jp/brain_hemi/Souki/Koushuku/ROM/ROM_2_teyubi.html
[35] “巴齊尼氏小體, ” http://www.dls.ym.edu.tw/neuroscience/receptor_c.html

QR CODE