簡易檢索 / 詳目顯示

研究生: 陳文映
Wen-Ying Chen
論文名稱: 以等效均質板概念分析不同邊界條件下FGM板之挫屈載重
The Buckling Loads of Functionlly Graded Material Plate with Different Boundary Conditions by the Concept of Equivalent Homogeneous Plate
指導教授: 張燕玲
Yen-Ling Chung
口試委員: 鄭蘩
Van Jeng
紀翔和
Hsiang-Ho Chi
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 110
中文關鍵詞: FGM梁FGM板FGM梁挫屈分析FGM板挫屈分析
外文關鍵詞: FGM beam, FGM plate, Buckling analysis of FGM beam, Buckling analysis of FGM plate
相關次數: 點閱:151下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是由梁理論建立FGM梁轉換為等效均質梁的觀念,再將沿著厚度方向分佈的楊氏模數函數轉換為等效楊氏模數的概念延伸至FGM板、FGM濺鍍板與FGM介面塗層板。首先利用梁曲率與彎矩關係推導FGM梁與等效均質梁之關係,再由尤拉立柱公式解出FGM梁之挫屈載重。而FGM板利用等效均質梁的觀念將其係數 轉換為等效均質板之楊氏模數與慣性矩。本文選擇三種楊氏模數分佈曲線,分別為冪次方函數(P-FGM)、S型函數(S-FGM)、指數函數(E-FGM)。考慮兩種邊界條件之FGM板:(一)兩對邊為簡支端,另兩對邊為自由端;(二)兩對邊為簡支端,另兩對邊為固定端,以有限元素軟體MARC分析等效均質板挫屈載重之數值解。為了證明等效均質板所求得之挫屈載重是正確的,將數值分析的結果與文獻之理論解交叉比對,分別探討材料指數p與材料梯度 的改變對挫屈載重的影響。本文可將FGM材料轉換為等效均質材料,簡化FGM材料繁複的計算,減少FGM材料與理論解誤差的累積。
    研究結果顯示,FGM板之有限元素法數值解與理論值之挫屈載重誤差,和等效均質板之有限元素法分析與理論值之挫屈載重誤差皆在合理範圍內。楊氏模數分佈曲線以S-FGM材料分佈抵抗挫屈載重為最大,其次是E-FGM;而P-FGM材料最容易產生挫屈。在相同材料分佈曲線下,降低材料指數反而可以提昇構件之整體勁度。若邊界條件之束制條件增加,則整體抵抗挫屈的載重增加,就行為來說是較不容易產生挫屈。以FGM濺鍍板抵抗挫屈能力最佳,能有效緩解板在受軸壓所產生之應力集中的問題。


    This article is based on Beam Theory and is shown to establish the concept of functionally graded beam transforms into equivalent homogeneous beam. Moreover, extending the concept of relationship between functionally graded material and equivalent homogeneous material to FGM plate, FGM coated plate and FGM undercoated plate to complete this paper.Using beam moment-curvature equation derived the relationship between functionally graded beam and equivalent homogeneous beam, and solved beam buckling solution by Euler’s Column Formula. Using concept of equivalent homogeneous beam for FGM plate material coefficient transforms into equivalent homogeneous plate. The Young’s modulus of the beam are assumed to be graded continuously in the direction z of thickness. The variation of the Young’s modulus follows a power-law, sigmoid function and exponential function distribution in terms of the volume fractions of functionally graded material. It’s assumed that the Poisson’s ratio of the beam remain constant. Two kinds of boundary conditions are considered. One is to subjected simple-support at the opposite of x-axis and another is cantilever-support support at the opposite of x-axis.To check the accuracy of equivalent homogeneous plate analytical buckling solution, the numerical buckling solutions by MARC program of finite element method are obtained and compare with the theoretical buckling solution of literature.
    The result shows that the error of buckling load of finite element method is reasonable in FGM plates and equivalent homogeneous plates compare with theoretical value, it means FGM material can be replaced by equivalent homogeneous materials. Young’s modulus distribution curve of S-FGM is the best to resist the critical buckling load, second is E-FGM, the last is P-FGM. Reduce material index can improve the stiffness of member in the same material distribution curve. Add conditions of constraint can make critical buckling load increase under different boundary conditions. FGM coated plate is the best type to resist the critical buckling load. It’s the most effective plate type to relief the stress concentration problem in whole kinds of plates.

    目錄 表索引 圖索引 第一章 緒論 第二章 FGM梁之挫屈載重 第三章 FGM板的挫屈載重 第四章 FGM濺鍍板的挫屈載重 第五章 FGM介面塗層板的挫屈載重 第六章 結論與建議

    [1]B. V. Sankar., An elasticity solution for functionally graded beams. Composites Science and Technology 2001,61(5):689-696.
    [2]A. Chakrabortya ,S. Gopalakrishnana and J. N. Reddy., A new beam finite element for the analysis of functionally graded materials. International Journal of Mechanical Sciences 2003,45(3):519-539.
    [3]R. K. Bhangale and N. Ganesan., Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core. Journal of Sound and Vibration 2006,295(1-2):294-316.
    [4]S. H. Chi and Y. L. Chung., Mechanical behavior of functionally graded material plates under transverse load—Part I: Analysis. International Journal of Solids and Structures 2006,43(13):3657-3674.
    [5]S. H. Chi and Y. L. Chung., Mechanical behavior of functionally graded material plates under transverse load—Part II: Numerical results. International Journal of Solids and Structures 2006,43(13):3675-3691.
    [6] A. K. Upadhyay and K. R. Y. Simha., Equivalent homogeneous variable depth beam for cracked FGM beams;Compliance approach. International Journal of Fracture 2007,144(3):209-213.
    [7] M. Aydogdu and V. Taskin., Free vibration analysis of functionally graded beams with simply supported edges. Materials and Design 2007,28(5):1651-1656.
    [8] Z. Zhong and T. Yu., Analytical solution of a cantilever functionally graded beam. Composites Science and Technology 2007,67(3-4):481-488.
    [9] S. Abrate., Functionally graded plates behave like homogeneous plates. Composites Part B: Engineering 2008,39(1):151-158.
    [10] J. Yang and Y. Chen., Free vibration and buckling analyses of functionally graded beams with edge cracks. Composite Structures 2008,83(1): 48-60.
    [11] R. Kadoli, K. Akhtar and N. Ganesan., Static analysis of functionally graded beams using higher order shear deformation theory. Applied Mathematical Modelling 2008,32(12):2509-2525.
    [12] M. A. Benatta, I. Mechab, A. Tounsi and E. A. Adda Bedia., Static analysis of functionally graded short beams including warping and shear deformation effects. Computational Materials Science 2008,44(2):765-773.
    [13] J. Ying, C. F. Lu and W. Q. Chen., Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Composite Structures 2008,84 (3):209-219.
    [14] Y. A. Kang and X. F. Lia., Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force. International Journal of Non-Linear Mechanics 2009,44(6):696-703.
    [15] R. S. Khabbaz, B. D. Manshadi and A. Abedian., Nonlinear analysis of FGM plates under pressure loads using the higher-order shear deformation theories. Composite Structures 2009,89(3):333-344.
    [16] L. L. Ke, J. Yang and K. Sritawat., Postbuckling analysis of edge cracked functionally graded Timoshenko beams under end shortening. Composite Structures 2009,90(2):152-160.
    [17] M. Simsek., Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design 2010,240(4)697-705.
    [18] Y. Huang and X. F. Li., Buckling of functionally graded circular columns including shear deformation. Materials and Design 2010,31(7):3159-3166.
    [19] S. E. Esfahani, Y. Kiani and M. R. Eslami., Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations. International Journal of Mechanical Sciences 2013,69:10-20.
    [20] S. R. Li and R. C. Batra., Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams. Composite Structures 2013,95:5-9.
    [21] 張燕玲、溫欣燁,不同邊界條件下之FGM板挫屈行為的力學分析,國立臺灣科技大學營建工程研究所碩士論文,2013。

    QR CODE