簡易檢索 / 詳目顯示

研究生: 鄭羽婷
Yu-ting Cheng
論文名稱: 不同邊界條件下之均佈彈性支承FGM板的挫屈行為力學分析
The Buckling Analysis of Functionally Graded Material Plate with uniform elastic support under Different Boundary Conditions
指導教授: 張燕玲
Yen-Ling Chung
口試委員: 鄭蘩
none
紀祥和
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 166
中文關鍵詞: 不同邊界條件下之均佈彈性支承FGM板的挫屈行為力學分析
外文關鍵詞: The Buckling Analysis of Functionally Graded Mat
相關次數: 點閱:168下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要以Levy-solution理論建立x向對邊為簡支端,y向對邊為任意支承的均佈彈性支承之功能梯度材料(FGM)板受橫向軸壓的平衡方程式與諧和方程式,進而代入y向的邊界條件而解出其挫屈載重。研究結果顯示,楊氏模數比與材料指標相同下,改變材料分佈模式對於其挫屈載重的影響劇烈,在邊界條件的改變下支承對板的束制能力越強,對於挫屈的束制較為強烈,增加彈性支承的勁度對於抵抗挫屈有明顯之效果。


    The main purpose of this thesis is to establish the equilibrium and compatibility equations for FGM rectangular plate subjected simple-support at both x side and arbitrary support at the other side , uniform elastic support on the bottom plate, by using the Levy-solution. The buckling equation obtained after giving the boundary condition of y side and analyze the critical load after giving the parameter of material property. Two kinds of boundary conditions are considered. One is to subjected simple-support at both x side with free end at both y side and another is simple-support at both x side with fixed end at both y side. It is assumed that the Poisson’s ratio of the plate remains constant and the Young’s modulus vary along the thickness direction. The research is concentrated to three kind of distribution of Young’s modulus, which are power-law (P-FGM), sigmoid function (S-FGM), and exponential function (E-FGM). Moreover, extending the research to FGM coated plate and FGM undercoated plate to complete this article. To prove the accuracy of analytical solution, the numerical solutions by MARC software of finite element method are obtained and compare with the analytical solution. Results show that the variation of Young's modulus distribution affects the buckling behaviors of the FGM plates seriously. When the plate resist buckling fixed end better than free end. Increase elastic support’s stiffness can Improve the buckling load.

    目錄 第一章 緒論 第二章 FGM板大變形之理論基礎 第三章 FGM板的挫屈載重 第四章 FGM濺鍍板的挫屈載重 第五章 FGM介面塗層板的挫屈載重 第六章 結論與建議

    1.Reddy, J., Analysis of functionally graded plates. International Journal for Numerical Methods in Engineering, 2000. 47(1-3): p. 663-684.
    2.Zenkour, A.M., Generalized shear deformation theory for bending analysis of functionally graded plates. Applied Mathematical Modelling, 2006. 30(1): p. 67-84.
    3. Shen, H.-S., Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments. International Journal of Mechanical Sciences, 2002. 44(3): p. 561-584.
    4.Feldman, E. and J. Aboudi, Buckling analysis of functionally graded plates subjected to uniaxial loading. Composite Structures, 1997. 38(1): p. 29-36.
    5.Zhao, X., Y. Lee, and K. Liew, Mechanical and thermal buckling analysis of functionally graded plates. Composite Structures, 2009. 90(2): p. 161-171.
    6.Chi, S.-H. and Y.-L. Chung, Mechanical behavior of functionally graded material plates under transverse load—part I: analysis. International Journal of Solids and Structures, 2006. 43(13): p. 3657-3674.
    7.Chi, S.-H. and Y.-L. Chung, Mechanical behavior of functionally graded material plates under transverse load—part II: numerical results. International Journal of Solids and Structures, 2006. 43(13): p. 3675-3691.
    8.Shariat, B., R. Javaheri, and M. Eslami, Buckling of imperfect functionally graded plates under in-plane compressive loading. Thin-walled structures, 2005. 43(7): p. 1020-1036.
    9.Shariat, B. and M. Eslami, Buckling of thick functionally graded plates under mechanical and thermal loads. Composite Structures, 2007. 78(3): p. 433-439.
    10.Praveen, G. and J. Reddy, Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. International Journal of Solids and Structures, 1998. 35(33): p. 4457-4476.
    11.Sato, M., S. Kanie, and T. Mikami, Mathematical analogy of a beam on elastic supports as a beam on elastic foundation. Applied Mathematical Modelling, 2008. 32(5): p. 688-699.
    12.Sato, M., S. Kanie, and T. Mikami, Structural modeling of beams on elastic foundations with elasticity couplings. Mechanics Research Communications, 2007. 34(5): p. 451-459.
    13.Gilhooley, D., et al., Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions. Composite Structures, 2007. 80(4): p. 539-552.
    14.Xiao, J., et al., Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method. Composites Part B: Engineering, 2008. 39(2): p. 414-427.
    15.Lu, C., C. Lim, and W. Chen, Semi‐analytical analysis for multi‐directional functionally graded plates: 3‐D elasticity solutions. International Journal for Numerical Methods in Engineering, 2009. 79(1): p. 25-44.
    16.Raki, M., R. Alipour, and A. Kamanbedast, Thermal Buckling of Thin Rectangular FGM Plate∥. World Applied Sciences Journal, 2012. 16(1): p. 52-62.
    17.Wen, P., J. Sladek, and V. Sladek, Three‐dimensional analysis of functionally graded plates. International Journal for Numerical Methods in Engineering, 2011. 87(10): p. 923-942.
    18.Phung‐Van, P., et al., A cell‐based smoothed discrete shear gap method (CS‐FEM‐DSG3) based on the C0‐type higher‐order shear deformation theory for dynamic responses of Mindlin plates on viscoelastic foundations subjected to a moving sprung vehicle. International Journal for Numerical Methods in Engineering, 2014.
    19.Bhandari, M. and K. Purohit, Analysis of Functionally Graded Material Plate under Transverse Load for Various Boundary Conditions. 2000.
    20.Zamenjani, M.H., A.T. Birgani, and M. Isvandzibaei, Volume Fraction Law for Stainless Steel on Inner Surface and Nickel on Outer Surface For FGM Cylindrical Shell. 2011.
    21.高英力,馬保國,王信剛,温小棟與穆松,「盾構隧道功能梯度混凝土管片的研發及性能研究」 Chinese Journal of Rock Machanics and Engineering,Vol. 26, No. 11,2007。

    QR CODE