簡易檢索 / 詳目顯示

研究生: 許博湶
Bo-Quan Xu
論文名稱: 氧化物活性銲劑對鎂合金銲接性質影響
Influence of Oxide Activating Fluxes on Weldability of Magnesium Alloy
指導教授: 蔡顯榮
Hsien-Lung Tsai
口試委員: 向四海
Su-Hai Hsiang
鄭慶民
Ching-Min Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 74
中文關鍵詞: 助銲劑氬銲鎂合金入熱量
外文關鍵詞: flux, TIG, magnesium alloy, heat input
相關次數: 點閱:212下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目的為探討在鎂合金AZ61上,塗覆不同氧化物活性助銲劑(TiO2、ZrO2、Fe2O3),以不同塗覆量、不同銲接電流下,對銲道所造成的影響。在進行銲接時,記錄銲道的熱影響區溫度變化。銲接後切取試片進行深寬比的量測、顯微組織的觀察、微小硬度的量測與EDS銲道成份分析。
結果顯示,氧化物活性助銲劑在適當塗覆量下與較大銲接電流中均可使銲深寬比增加,TiO2粉末增加幅度較大,在來依次為Fe2O3與ZrO2粉末,每種助銲劑能增加深寬比的塗覆量有一極限值,超過此一極限值則深寬比開始下降。
銲道溫度量測結果指出,添加氧化物活性助銲劑皆會造成銲接時入熱量的增加,由此可推測電弧壓縮理論與陽極斑點理論為影響氧化物造成鎂合金深寬比增加的因素之一。硬度量測結果指出,助銲劑的使用會造成硬度值下降,推測銲接入熱量的增加造成銲道內晶粒成長。由SEM觀察可知,助銲劑粉末的種類與銲接入熱量為決定助銲劑是否殘留於銲道中的重要因素。

關鍵字:鎂合金、氬銲、助銲劑、入熱量


The effects of fluxes (TiO2, Fe2O3, ZrO2) with different painting quantity and welding current on the weldability of magnesium alloy were investigated. The effects of chemical of composition of fluxes on the geometry of welding pool and the variations of welding temperature of HAZ were measured during welding. The depth-to-width ratio, heat input, microstructure, microhardness of specimens were measured. The chemical compositions of weld bead were obtained by EDS.
The results show that the penetration and depth-to-width ratio increase with using an optimal thickness of oxide activating fluxes. Significant increment in penetration was obtained with TiO2. Less ZrO2 could reach no significant affectivity under the higher welding current.
The results show that the heat inputs of weld increase the application of with the oxide activating flux. Both the contraction of the arc and anode spot contraction model are the mechanism to increase the depth-to-width ratio.
The result of microhardness measurement shows a hardness reduction when active fluxes were used in the weld zone. The mechanism is agreed with growth of the grain size due to the increscent of heat input with the active flux.

Key word:magnesium alloy、TIG、flux、heat input

中文摘要------------------------------------------------------Ⅰ 英文摘要------------------------------------------------------Ⅱ 誌謝----------------------------------------------------------Ⅲ 目錄----------------------------------------------------------Ⅳ 圖目錄--------------------------------------------------------Ⅶ 表目錄--------------------------------------------------------ⅩⅠ 第一章 前言---------------------------------------------------1 第二章 文獻回顧-----------------------------------------------4 2.1 鎂合金的基本特性------------------------------------------4 2.2 鎂合金的銲接性--------------------------------------------6 2.3 TIG的工作原理Active-TIG的應用-----------------------------9 2.3.1 TIG的工作原理 ------------------------------------------9 2.3.1 Active-TIG的應用 --------------------------------------10 2.4 Flux的種類與溶劑-----------------------------------------12 2.4.1 氧化物 ------------------------------------------------12 2.4.2 氯化物與氟化物-----------------------------------------13 2.4.3 溶劑---------------------------------------------------13 2.5 Flux影響熔池穿透深度機制---------------------------------14 2.5.1 溶池流動反轉理論---------------------------------------14 2.5.2 電弧壓縮理論-------------------------------------------16 2.5.3 銲池陽極班點緊縮---------------------------------------19 2.6 Active-TIG對銲道的影響-----------------------------------20 2.6.1 銲道深寬比---------------------------------------------20 2.6.2 銲道的顯微組織-----------------------------------------20 2.6.3 銲道機械性質-------------------------------------------21 2.6.4 銲道的化學成份-----------------------------------------21 2.6.5 銲道的入熱量-------------------------------------------22 第三章 實驗方法與步驟----------------------------------------24 3.1 實驗流程-------------------------------------------------24 3.2 實驗方法-------------------------------------------------25 3.2.1 試片準備-----------------------------------------------25 3.2.2 活性助銲劑備製與塗覆-----------------------------------26 3.2.3 惰性氣體電弧銲接---------------------------------------27 3.2.4 微小硬度試驗-------------------------------------------29 3.2.5 光學顯微鏡觀察-----------------------------------------29 3.2.6 銲道溫度量測-------------------------------------------30 3.2.7 掃描式電子顯微鏡觀察-----------------------------------31 第四章 實驗結果與討論----------------------------------------32 4.1 銲道外形觀察---------------------------------------------32 4.1.1 定電流不同塗覆量深寬比---------------------------------32 4.1.2 定塗覆量不同電流深寬比---------------------------------33 4.2 銲道入熱量量測-------------------------------------------35 4.2.1 定電流不同塗覆量銲道溫度量測---------------------------38 4.2.2 定塗覆量不同電流銲道溫度量測---------------------------39 4.3 銲道金相觀察---------------------------------------------42 4.3.1 定電流不同塗覆量金相觀察-------------------------------43 4.3.2 定塗覆量不同電流金相觀察-------------------------------43 4.4 銲道微小硬度分析-----------------------------------------58 4.4.1 定電流不同塗覆量微小硬度觀察---------------------------59 4.4.2 定塗覆量不同電流微小硬度觀察---------------------------59 4.5 銲道SEM觀察----------------------------------------------63 4.5.1 助銲劑粉末SEM觀察--------------------------------------63 4.5.2 銲道SEM觀察與EDS分析-----------------------------------63 第五章 結論--------------------------------------------------68 第六章 未來研究方向------------------------------------------69 參考文獻-----------------------------------------------------70

[1]Shanping L., F. Hidetoshi and N. Kiyoshi, “Marangoni Convection and Weld Shape Variations in Ar-O2 and Ar-CO2 Shielded GTA Welding,” Materials Science and Engineering A, Vol. 380, No. 1-2 , pp. 290-297 (2004).
[2]Gurevich S. M., V. N. Zamkov and N.A. Kushnirenko, “Improving the Penetration of Titanium Alloys When They are Welded by Argon Tungsten Arc Process.” Avt Svarka, No. 9, pp. 1-4 (1965).
[3]Lucas, W. and D. Howse, “Activating flux increasing the performance and productivity of the TIG and plasma processes,” Welding and Metal Fabrication, Vol. 64, No. 1, pp. 11-17 (1996).
[4]Marya, M. “Theoretical and Experimental Assessment of Chloride Effects in the A-TIG Welding of Magnesium,” Welding in the World, Le Soudage Dans Le Monde, Vol. 46, No. 7-8 , pp. 7-21 (2002).
[5]王建義,「鎂合金板材之壓型加工技術」,工業材料雜誌,170期,第132-136頁,90年2月。
[6]Ghosh P. K., Material Transactions, JIM, Vol. 32, No. 2, pp. 145-150 (1991).
[7]Oates W. R., Welding Handbook, Vol. 3, American Welding Society, pp. 121-145 (1996).
[8]中華民國鑄造學會,鑄造手冊,pp. 111-135 (1999)。
[9]蔡宗亮,「鎂合金焊接」,台灣鎂合金協會91年度南區之技術研討會,台南 (2002)。
[10]Chi, C. T. , C. G. Chao, T. F. Liu and C. C. Wang, “A Study of Weldability and Fracture Modes in Electron Beam Weldments of AZ Series Magnesium Alloys,” Materials Science and Engineering A, Vol. 435-436, pp. 672-680 (2006).
[11]吳信輝,「電子束或電弧銲接鎂合金之微織構與機械分析」,碩士論文,國立中山大學,高雄 (2003)。
[12]銲接工程管理基礎課程,勞工委員會職業訓練局,民國86年六月.
[13]Modenesi P. J., E. R. Apolinario and I. M. Pereira, “TIG Welding with Single-Component Fluxes,” Journal of Materials Processing Technology, Vol. 99, No. 1, pp. 260-265 (2000).
[14]周怡伶,「氬銲塗覆助銲劑對低碳鋼銲接性質的影響」,碩士論文,國立中興大學,台中 (2003)。
[15]張兆樑、劉黎明、沈勇、王來源,「鎂合金的活性電弧焊接」,中國有色金屬學報,Vol. 15, No. 6, pp. 912-916 (2005)。
[16]Marya, M. and G. R. Edwards, “Chloride Contributions in Flux-Assisted GTA Welding of Magnesium Alloys,” Welding Journal (Miami, Fla), Vol. 81, No. 12, pp. 291-298 (2002).
[17]劉黎明、張兆樑、沈勇、王來,「活性劑對鎂合金TIG焊接熔深的影響」,金屬學報,Vol. 42, No. 4, pp. 399-404 (2006)。
[18]Burgardt P. and C. R. Heiple, “Interaction between Impurities and Welding Variables in Determining GTA Weld Shape,” Welding Journal (Miami, Fla), Vol. 2, No. 6, pp. 150-155 (1986).
[19]Heiple C. R., J. R. Rope, R. T. Stagner and R. J. Aden, “Surface Active Element Effect on the Shape of GTA, Laser, and Electron Beam Welds.” Welding Journal (Miami, Fla), Vol. 62, No. 3 , pp. 72-77 (1983).
[20]Heiple, C. R. and J. R. Roper, “Effect of Selenium on GTAW Fusion Zone Geometry,” Welding Journal (Miami, Fla), Vol. 60, No. 8, pp. 143-145 (1981).
[21]Heiple, C. R. and P. Burgardt, “Effects of SO2 Shielding Gas Additions on GTA Weld Shape,” Welding Journal (Miami, Fla), Vol. 64, No. 6, pp. 159-162 (1985).
[22]Yang C., S. Lin, F Liu, L. Wu and Q. Zhang, “Research on the Mechanism of Penetration Increase by Flux in A-TIG Welding,” Journal of Materials Science and Technology, Vol. 19, pp. 225-227 (2003).
[23]Perry, N., S. Marya and E. Soutif, “Study and Development of Flux Enhanced GTA Penetrations in a Commercial Grade Titanium,” ASM Proceedings of the International Conference: Trends in Welding Research, pp. 520-525 (1998).
[24]趙玉珍、雷永平、史耀武,「A-TIG焊中氧含量對熔池流動方式影響的數值模擬」,金屬學報,Vol. 40, No. 10, pp. 1085-1092 (2004)。
[25]曾光宏、吳春森、王本智,「活性助銲劑對氬銲銲道成形之影響」,銲接與切割,Vol. 12, No. 6, pp. 63-68 (2002)。
[26]Liu L., Z. Zhang, G. Song and Y. Shen, “Effect of Cadmium Chloride Flux in Active Flux TIG Welding of Magnesium Alloys,” Materials Transactions, Vol. 47, No. 2, February, pp. 446-449 (2006).
[27]Lucas W. and D. Howse, “Activating Flux-Increasing the Performance and Productivity of the TIG and Plasma Processes,” Welding and Metal Fabrication, Vol. 64, No. 1, pp. 11-17 (1996).
[28]Zhang Z. D., L. M. Liu, Y. Shen and L. Wang, “Mechanical Properties and Microstructures of a Magnesium Alloy Gas Tungsten Arc Welded with a Cadmium Chloride Flux,” Materials Characterization (2006).
[29]洪大凡,「AZ61鎂合金管材之熱擠成形性探討」,碩士論文,國立臺灣科技大學,台北 (2005)。
[30]Oates W. R., Welding Handbook, Vol. 1, American Welding Society, pp. 80(1987).
[31]Kou. S. D., Wiley, “Welding Metallurgy,” New York , Wiley, pp. 168 (1987).
[32]王振欽,銲接學,pp. 6-10,台北,高立出版,民國92年。
[33]黃義順、王星豪,「鎂及鎂合金之基本特性與銲接性」,銲接與切割, Vol. 13, No. 3, pp. 33-42 (2003)。
[34]Lu S. F., H. Sugiyama, H. Tanaka and K. Nogi, “Weld Penetration and Marangoni Convection with Oxide Fluxes in GTA Welding,” Materials Transactions, Vol. 43, No. 11, pp. 2926-2931 (2002).
[35]Rodrigues A., A. Loureiro and A. Batista , “Effect of Activating Fluxes on Bead Geometry and on Microstructure of A-TIG Welds,” Welding in the World, Vol. 49, No. 9 , pp. 415-425 (2005).
[36]Anderson P. C. J. and R. Wiktorowicz, “Improving Productivity with A-TIG Welding,” Welding and Metal Fabrication, No. 3, pp. 108-109 (1996).

QR CODE