簡易檢索 / 詳目顯示

研究生: MUHAMMAD RAZAKI APRILIO
MUHAMMAD RAZAKI APRILIO
論文名稱: 用於神經組織再生的紫外線固化聚乳酸/聚己二酸對苯二甲酸二乙二醇酯支架
UV-Curable Polylactic Acid/Poly Adipate Co-Terephthalate Diethylene Glycol Scaffolds for Nerve Tissue Regeneration
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: Ting-Yu Liu
劉定宇
鄭詠馨
Yung-Hsin Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 73
中文關鍵詞: 聚乳酸聚己二酸對苯二甲酸二乙二醇酯神經導管3D 列印
外文關鍵詞: Poly(lactic acid), Poly(adipate co-terephthalate diethylene glycol), Nerve Conduit, 3D Printing
相關次數: 點閱:183下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在以 DLP 3D 列印法開發可生物降解的神經導管。為了實現這一目標,本研究以甲基丙烯酸酐(MAAH)將聚乳酸(PLA)和己二酸共對苯二甲酸二乙二醇酯(PATDEG)進行末端封端,製備了 UV 可固化樹脂。首先,將 PLA 和PATDEG 以乙二醇解聚合,產生寡聚體,然後再與 MAAH 反應,使得 PLA 和PATDEG 的 鏈 末 端 帶 有 甲 基 丙 烯 酸 酯 官 能 團 。 然 後 將 PLA-DIMA 和PATDEG-DIMA 以不同比例混合,並使用 DPPH 作為自由基清除劑,通過 DLP 3D列印進行 UV 固化,製備出微凹槽神經導管。製備得到的神經導管經過力學測試和生物相容性測試。在 3D 可列印性方面,添加了 0.0375%和 0.05%的 DPPH,所得之神經導管,其尺寸和形狀與預期設計非常接近。此外,較高的 PATDEG含量提高了導管的柔軟性。所有的 PLA/PATDEG 組合對相對細胞生長性都沒有顯著影響。因此顯示 PLA/PATDEG 具有生物相容性,適於生物醫學之應用。


    This research aims to develop a biodegradable nerve conduit through DLP 3D
    printing process. In order to achieve this goal, UV-curable resins were prepared by
    end-capping poly(lactic acid) (PLA) and poly(adipate co-terephthalate diethylene
    glycol) (PATDEG) with methacrylic anhydride (MAAH). Firstly, PLA and PATDEG
    were glycolyzed to produce oligomers before reacting with MAAH to create PLA and
    PATDEG with methacrylate functional groups at both the ends of the chain. The
    PLA-DIMA and PATDEG-DIMA were mixed in various proportions and UV-cured
    using DLP 3D printing into microgrooved nerve conduits with DPPH as the free
    radical scavenger. The printability results show that the nerve conduits prepared with
    0.0375% and 0.05% DPPH exhibited a dimension and shape that closely resembled
    the intended design. Furthermore, higher PATDEG content more flexible conduits. In
    addition, all the PLA/PATDEG compositions exhibited no significant effect on
    relative cell growth. Thus PLA/PATDEG is biocompatible and safe for use in
    biomedical applications

    Table of Contents 摘要..... i Abstract........................................ii Acknowledgements.................... iii Table of Contents........................iv List of Figures.............................vi List of Tables............................viii Chapter 1. Aim of The Work....... 1 1.1 Problem Statement.......... 1 1.2 Objectives........................2 Chapter 2. Literature Review.......3 2.1 Nervous System.............. 3 2.2 Peripheral Nerve Injuries ..............4 2.3 Nerve Injury Repairment..............6 2.4 Material for Peripheral Nerve Conduit.................... 7 2.4.1 Natural Polymer Materials............................. 8 2.4.2 Synthetic Polymer Materials.......................... 9 2.5 Poly Lactid Acid (PLA) ..........11 2.6 Poly Adipate Terephthalate Diethylene Glycol (PATDEG)...........................15 2.7 2,2-diphenyl-1-picrylhydrazyl (DPPH)..................16 2.8 UV Curing Treatment.................... 17 2.9 Vat Photopolymerization....................................... 18 2.9.1 Stereolithography (SLA).............................. 19 2.9.2 Digital Light Processing (DLP)....................22 2.9.3 Two-photon polymerization (2PP)............... 24 2.9.4 Volumetric 3D printing................................ 26 Chapter 3. Experimental Methodology ...............................27 3.1 Experimental Process.... 27 3.2 Materials........................28 3.3 Experimental Steps........28 3.3.1 Glycolysis of PLA........................................ 28 3.3.2 Methacrylate end-capping of GlyPLA ......... 29 3.3.3 Methacrylate end-capping of PATDEG....... 30 3.3.4 Nerve Conduit Fabrication........................... 31 3.4 Characterization of GlyPLA .................................. 33 3.5 Characterization of PLA-DIMA and PATDEG-DIMA..................................33 3.6 Mechanical Properties........34 3.7 Biocompatibility............35 3.7.1 Cell Culture ......... 35 3.7.2 Cell Viability (MTT Assay)......................... 35 Chapter 4. Result and Discussion ....................................... 36 4.1 Characterization of Glycolyzed PLA..................... 36 4.2 Characterization of PLA-DIMA............................ 40 4.3 Characterization of PATDEG-DIMA.................... 42 4.4 Mechanical Properties of PLA-PATDEG-DIMA..............44 4.5 Cytoxicity of DPPH...... 47 4.6 Cell Viability PLA/PATDEG-DIMA.................... 49 4.7 Printabillity of Nerve Conduit................................50 Chapter 5. Conclusion ................54 Chapter 6. Future Work............. 56 References..................................57

    References
    1. Vijayavenkataraman, S., Nerve guide conduits for peripheral nerve injury
    repair: A review on design, materials and fabrication methods. Acta Biomater, 2020. 106: p. 54-69.
    2. Taylor, B., C. Hardcastle, and M. Marsiske, Central Nervous System, in
    Encyclopedia of Gerontology and Population Aging. 2019. p. 1-4.
    3. S, L., Human Physiology (9th ed.). USA, New York, McGraw-Hill Press, 2006. p. 1-3.
    4. Lee, S., M. Patel, and R. Patel, Electrospun nanofiber nerve guidance conduits
    for peripheral nerve regeneration: A review. European Polymer Journal, 2022. 181: 111663.
    5. Gao, S.C., Xiangshang Lu, Beining Meng, Kai Zhang, Ke-Qin Zhao, Huijing, Recent advances on nerve guide conduits based on textile methods. Smart
    Materials in Medicine, 2023. 4: p. 368-383.
    6. Sunderland, S., A Classification of Peripheral Nerve Injuries Producing Loss
    of Function. Brain, 1951. 74(4): p. 491–516.
    7. Tezcan, A.H., Peripheral Nerve Injury and Current Treatment Strategies, in
    Peripheral Nerve Regeneration - From Surgery to New Therapeutic
    Approaches Including Biomaterials and Cell-Based Therapies Development. 2017. p. 3-30.
    8. Carvalho, C.R., R.L. Reis, and J.M. Oliveira, Fundamentals and current
    strategies for peripheral nerve repair and regeneration. Adv Exp Med Biol, 2020: p. 173-201.
    9. Dai, W., Yang, Y., Yang, Y., & Liu, W., Material advancement in
    tissue-engineered nerve conduit. Nanotechnology Reviews, 2021. 10(1): p. 488-503.
    10. Wang, S. and L. Cai, Polymers for Fabricating Nerve Conduits. International
    Journal of Polymer Science, 2010. 2010: p. 1-20.
    11. Wang, H., Zhao, Q., Zhao, W., Liu, Q., Gu, X., & Yang, Y.Repairing rat
    sciatic nerve injury by a nerve-growth-factor-loaded, chitosan-based nerve conduit. Biotechnol Appl Biochem, 2012. 59(5): p. 388-394.
    12. Sarker, M. D., Naghieh, S., McInnes, A. D., Schreyer, D. J., & Chen, X., Regeneration of peripheral nerves by nerve guidance conduits: Influence of
    design, biopolymers, cells, growth factors, and physical stimuli. Prog
    Neurobiol, 2018. 171: p. 125-150.
    13. Kehoe, S., X.F. Zhang, and D. Boyd, FDA approved guidance conduits and
    wraps for peripheral nerve injury: a review of materials and efficacy. Injury, 2012. 43(5): p. 553-572.
    14. Nectow, A.R., K.G. Marra, and D.L. Kaplan, Biomaterials for the
    development of peripheral nerve guidance conduits. Tissue Eng Part B Rev, 2012. 18(1): p. 40-50.
    15. Zetti, G., Gatti, S., Premoselli, P., Quattrini, A., Comola, M., Marchettini, P., Albani, A.P., DeRino, F & Ferla, G., Morphological and functional evaluation
    of peripheral nerve regeneration in the rat using an expanded
    polytetrafluoroethylene (PTFE) microprosthesis. Journal of Investigative
    Surgery, 1991. 4: p. 437-443.
    16. Wang, Y., Zhang, Y., Li, X., & Zhang, Q, The progress of biomaterials in
    peripheral nerve repair and regeneration. Journal of Neurorestoratology, 2020. 8(4): p. 252-269. 17. Bini, T. B., Gao, S., Xu, X., Wang, S., Ramakrishna, S., & Leong, K. W. Peripheral nerve regeneration by microbraided poly(L-lactide-co-glycolide)
    biodegradable polymer fibers. J Biomed Mater Res A, 2004. 68(2): p. 286-95.
    18. Zhu, L., Jia, S., Liu, T., Yan, L., Huang, D., Wang, Z., Chen, Z.,Zhang, Z., Zeng, W.,Zhang, Y.,Yang, H., & Hao, D. Aligned PCL Fiber Conduits
    Immobilized with Nerve Growth Factor Gradients Enhance and Direct Sciatic
    Nerve Regeneration. Advanced Functional Materials, 2020. 30(39): 2002610.
    19. Garlotta, D., A Literature Review of Poly(Lactic Acid). Journal of Polymers
    and the Environment, 2001. 9(2): p. 63-84.
    20. P Pawar, R., U Tekale, S., U Shisodia, S., T Totre, J., & J Domb, A., Biomedical applications of poly (lactic acid). Recent patents on regenerative
    medicine, 2014. 4(1). p. 40-51
    21. Moya-Lopez, C., González-Fuentes, J., Bravo, I., Chapron, D., Bourson, P., Alonso-Moreno, C., & Hermida-Merino, D. Polylactide Perspectives in
    Biomedicine: From Novel Synthesis to the Application Performance. Pharmaceutics, 2022. 14(8).p. 1673.
    22. Ranakoti, L., Gangil, B., Mishra, S. K., Singh, T., Sharma, S., Ilyas, R. A., &
    El-Khatib, S. Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials (Basel), 2022. 15(12): 4312.
    23. Ranakoti, L., Gangil, B., Bhandari, P., Singh, T., Sharma, S., Singh, J., &
    Singh, S. Promising Role of Polylactic Acid as an Ingenious Biomaterial in
    Scaffolds, Drug Delivery, Tissue Engineering, and Medical Implants:
    Research Developments, and Prospective Applications. Molecules, 2023. 28(2).p. 485.
    24. Santoro, M., Shah, S. R., Walker, J. L., & Mikos, A. G. Poly(lactic acid)
    nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev, 2016. 107:
    p. 206-212.
    25. Sun, C., Jin, X., Holzwarth, J. M., Liu, X., Hu, J., Gupte, M. J., Zhao, Y. &
    Ma, P. X. Development of channeled nanofibrous scaffolds for oriented tissue
    engineering. Macromol Biosci, 2012. 12(6): p. 761-769.
    26. Xu, T., X. Zhang, and X. Dai, Properties of Electrospun Aligned Poly(lactic
    acid)/Collagen Fibers with Nanoporous Surface for Peripheral Nerve Tissue
    Engineering. Macromolecular Materials and Engineering, 2022. 307(10):
    2200256.
    27. Jian, J., Z. Xiangbin, and H. Xianbo, An overview on synthesis, properties and
    applications of poly(butylene-adipate-co-terephthalate)–PBAT. Advanced
    Industrial and Engineering Polymer Research, 2020. 3(1): p. 19-26.
    28. Deng, Y., Yu, C., Wongwiwattana, P., & Thomas, N. L. Optimising Ductility
    of Poly(Lactic Acid)/Poly(Butylene Adipate-co-Terephthalate) Blends
    Through Co-continuous Phase Morphology. Journal of Polymers and the
    Environment, 2018. 26(9): p. 3802-3816.
    29. Kanwal, A., Zhang, M., Sharaf, F., & Li, C. Polymer pollution and its
    solutions with special emphasis on Poly (butylene adipate terephthalate
    (PBAT)). Polymer Bulletin, 2022. 79(11): p. 9303-9330.
    30. Marraffa, J. M., Holland, M. G., Stork, C. M., Hoy, C. D., & Hodgman, M. J. Diethylene glycol: widely used solvent presents serious poisoning potential. J
    Emerg Med, 2008. 35(4): p. 401-406.
    31. Foti, M.C., Use and Abuse of the DPPH(*) Radical. J Agric Food Chem, 2015. 63(40): p. 8765-8776.
    32. Musa, K.H., A. Abdullah, and A. Al-Haiqi, Determination of DPPH free
    radical scavenging activity: application of artificial neural networks. Food
    Chem, 2016. 194: p. 705-711.
    33. Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C. M. Determination of Antioxidants by DPPH Radical
    Scavenging Activity and Quantitative Phytochemical Analysis of Ficus
    religiosa. Molecules, 2022. 27(4). p. 1326.
    34. Hoyle, C.E., Photocurable coatings. 1990: p. 1-16.
    35. Tounthai, J., Petchsuk, A., Opaprakasit, P., & Opaprakasit, M. Curable
    polyester precursors from polylactic acid glycolyzed products. Polymer
    Bulletin, 2013. 70(8): p. 2223-2238.
    36. Khedr, M.S.F., New UV Curable Acrylated Urethane-Oligoesters Derived
    From Poly (Ethylene Terephthalate) PET Waste. 2021. p. 201-214.
    37. Al Rashid, A., Ahmed, W., Khalid, M. Y., & Koc, M. Vat
    photopolymerization of polymers and polymer composites: Processes and
    applications. Additive Manufacturing, 2021. 47: 102279.
    38. Huang, J., Q. Qin, and J. Wang, A Review of Stereolithography: Processes and
    Systems. Processes, 2020. 8(9): p. 1138.
    39. Li, W., Wang, M., Ma, H., Chapa-Villarreal, F. A., Lobo, A. O., & Zhang, Y. S. Stereolithography apparatus and digital light processing-based 3D
    bioprinting for tissue fabrication. iScience, 2023. 26(2): p. 106039.
    40. Zakeri, S., M. Vippola, and E. Levänen, A comprehensive review of the
    photopolymerization of ceramic resins used in stereolithography. Additive
    Manufacturing, 2020. 35: 101177.
    41. Rodríguez-Pombo, L., Xu, X., Seijo-Rabina, A., Ong, J. J., Alvarez-Lorenzo, C., Rial, C.,Nieto, D., Gaisford, S., Basit, A.W., & Goyanes, A. Volumetric
    3D printing for rapid production of medicines. Additive Manufacturing, 2022. 52: 102673.
    42. Pagac, M., Hajnys, J., Ma, Q. P., Jancar, L., Jansa, J., Stefek, P., & Mesicek, J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers (Basel), 2021. 13(4) :
    p. 598.
    43. Lakkala, P., Munnangi, S. R., Bandari, S., & Repka, M. Additive
    manufacturing technologies with emphasis on stereolithography 3D printing
    in pharmaceutical and medical applications: A review. Int J Pharm X, 2023. 5:
    p. 100159.
    44. Hasrul Akhmal Ngadiman, N., Aniq Barid Basri, M., Mohd Yusof, N., Idris, A., & Fallahiarezoudar, E., Digital Light Processing (DLP) 3D Printing of
    Polyethylene Glycol (PEG) Biopolymer, Commercially available Ultra-High
    and Tough (UHT) Resin and Maghemite (γ-Fe2O3) Nanoparticles Mixture for
    Tissue Engineering Scaffold Application. Advanced Materials Letters, 2019. 10(11): p. 802-806. 45. Hosseinabadi, H. G., Nieto, D., Yousefinejad, A., Fattel, H., Ionov, L., & Miri, A. K. Ink material selection and optical design considerations in DLP 3D
    printing. Applied Materials Today, 2023. 30: p. 101721
    46. Chaudhary, R., Fabbri, P., Leoni, E., Mazzanti, F., Akbari, R., & Antonini, C. Additive manufacturing by digital light processing: a review. Progress in
    Additive Manufacturing, 2022. 8(2): p. 331-351.
    47. Zhu, W., Tringale, K. R., Woller, S. A., You, S., Johnson, S., Shen, H., Schimelman, J., Whitney, M., Steinauer, J., Xu, W., Yaksh, T., Nguyen, Q.T., & Chen, S. Rapid continuous 3D printing of customizable peripheral nerve
    guidance conduits. Mater Today (Kidlington), 2018. 21(9): p. 951-959.
    48. Ye, W., Li, H., Yu, K., Xie, C., Wang, P., Zheng, Y.,Zhang, P., Xiu, J., Yang, Y., Zhang, F., He, Y., & Gao, Q. 3D printing of gelatin methacrylate-based
    nerve guidance conduits with multiple channels. Materials & Design, 2020. 192:p. 108757.
    49. Chen, J., Zhou, H., Fan, Y., Gao, G., Ying, Y., & Li, J. 3D printing for bone
    repair: Coupling infection therapy and defect regeneration. Chemical
    Engineering Journal, 2023. p.144537.
    50. Bunea, A. I., del Castillo Iniesta, N., Droumpali, A., Wetzel, A. E., Engay, E., & Taboryski, R. Micro 3D Printing by Two-Photon Polymerization:
    Configurations and Parameters for the Nanoscribe System. Micro, 2021. 1(2):
    p. 164-180.
    51. Rodríguez-Pombo, L., Martínez-Castro, L., Xu, X., Ong, J. J., Rial, C., García, D. N.,González-Santos, A., Flores-González, J., Alvarez-Lorenzo, Carmen., Basit, A.W., & Goyanes, A. Simultaneous fabrication of multiple tablets
    within seconds using tomographic volumetric 3D printing. Int J Pharm X, 2023. 5: p. 100166.
    52. Valente, C. A., Chagastelles, P. C., Nicoletti, N. F., Garcez, G. R., Sgarioni, B., Herrmann, F., Pesenatto, P., Goldani, E., Zanini, M. L., Campos, M. M., Papaléo, R. M., da Silva, J. B. & de Souza Basso, N. R. Design and
    optimization of biocompatible polycaprolactone/poly (l-lactic-co-glycolic acid)
    scaffolds with and without microgrooves for tissue engineering applications. J
    Biomed Mater Res A, 2018. 106(6): p. 1522-1534.
    53. Yang, X., Liu, X., Xu, F., Ji, S., Sun, Y., Song, Z., Song, J., Wu, Y. & Yin, J. Fabrication of microgroove poly(lactic-co-glycolic acid) nerve guide conduit
    using dry-jet wet spinning for rat laryngeal recurrent nerve regeneration. Materials & Design, 2022. 223: 111151.
    54. Chieng, B. W., Ibrahim, N. A., Wan Yunus, W. M. Z., & Hussein, M. Z. Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of
    Graphene Nanoplatelets. Polymers, 2013. 6(1): p. 93-104.
    55. Ghaderian, A., Haghighi, A. H., Taromi, F. A., Abdeen, Z., Boroomand, A., &
    Taheri, S. M. R. Characterization of Rigid Polyurethane Foam Prepared from
    Recycling of PET Waste. Periodica Polytechnica Chemical Engineering, 2015. 59(4): p. 296-305. 56. Lee, J. H., Lee, T. H., Shim, K. S., Park, J. W., Kim, H. J., Kim, Y., & Jung, S. Effect of crosslinking density on adhesion performance and flexibility
    properties of acrylic pressure sensitive adhesives for flexible display
    applications. International Journal of Adhesion and Adhesives, 2017. 74: p. 137-143.
    57. Ozmen, M.M. and O. Okay, Superfast Responsive Ionic Hydrogels: Effect of
    the Monomer Concentration. Journal of Macromolecular Science, Part A, 2006. 43(8): p. 1215-1225.
    58. Borschel, G. H., Kia, K. F., Kuzon Jr, W. M., & Dennis, R. G. , Mechanical
    properties of acellular peripheral nerve. J Surg Res, 2003. 114(2): p. 133-139.
    59. Galasso, C., Piscitelli, C., Brunet, C., & Sansone, C. New In Vitro Model of
    Oxidative Stress: Human Prostate Cells Injured with
    2,2-diphenyl-1-picrylhydrazyl (DPPH) for the Screening of Antioxidants. Int J
    Mol Sci, 2020. 21(22): p. 8707.

    QR CODE