簡易檢索 / 詳目顯示

研究生: 葉旻鑫
Min-Hsin Yeh
論文名稱: 均勻結構之複合式鉑銥奈米金屬觸媒/ 葡萄糖氧化酵素電極及其製備與應用
Fabrication of Homogeneously-structured PtIr Bimetallic Nano-Catalyst/Glucose Oxidase Composite Electrode and its Applications
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
Tse-Chuan Chou
何國川
Kuo-Chuan Ho
王孟菊
Meng-Jiy Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 257
中文關鍵詞: 鉑銥奈米金屬觸媒雙氧水氧化反應均勻複合式觸媒/酵素結構電泳沉積法微型感測器
外文關鍵詞: bimetallic nanocatalysts PtIr/C, hydrogen peroxide oxidation reaction (HOPR), homogeneous catalyst/enzyme composite structure, electrophoresis deposition (EPD), mini sensor
相關次數: 點閱:295下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要分為兩部分:開發新穎鉑銥奈米金屬觸媒應用於催化雙氧水氧化反應與應用電泳沉積法製備均勻複合式觸媒/酵素結構生物感測器。
由XRD與TEM探討觸媒結構與粒徑大小及分佈並利用電化學測量觸媒對雙氧水之催化活性;應用同步輻射光源之X光原子吸收光譜(XAS)與密度泛含理論(DFT)解釋銥原子加入可修飾鉑原子之d層電子結構與增加觸媒表面官能基(-OH),能夠有效提高催化雙氧水氧化反應能力。本研究更進一步提出雙氧水氧化反應於觸媒表面之可能反應路徑,提出雙氧水氧化反應速率決定步驟為雙氧水於觸媒表面進行去質子化反應。
另外,本研究中提出一種新穎的均勻複合式觸媒/酵素結構之概念並藉由電泳沉積法同時沉積觸媒材料-鉑銥奈米金屬觸媒與酵素分子-葡萄糖氧化酵素於微型感測器之工作電極表面;由ESCA縱深分析電極結構證實利用電泳沉積法同時沉積觸媒與酵素能夠形成一層均勻結構之複合式觸媒/酵素薄膜。由長時間穩定性測試與酵素催化動力學探討得知均勻複合式觸媒/酵素結構之生物感測器具有長達25天以上的保存期限且Michaelis constant = 5.68 mM,顯示其均勻複合觸媒/酵素結構能提供穩定、三維空間結構之環境使其酵素穩定性與親合性提高並縮短其經由酵素催化之雙氧水與觸媒進行電化學反應之路徑。
本研究針對其製程參數與流程進行詳細的討論與分析後,所製備之均勻結構複合式微型感測器於施加電位0.4 V (vs. Printed Ag/AgCl)下,偵測葡萄糖之感測線性範圍介於2 mM ~ 20 mM,最低偵測極限為0.1 mM,偵測靈敏度為 2.89 μA/mM.cm2(R2=0.995, R.S.D. =3.26%, N=3);顯示藉由電泳沉積法能應用於製備具有良好再現性、穩定性與準確性之均勻複合式觸媒/酵素結構微型生物感測器。


This investigation mainly consists of two topics: (a) development of novel, bimetallic nanocatalyst PtIr/C and employing nanocatalyst in hydrogen peroxide oxidation reaction (HOPR). (b) Fabrication of the mini-biosensor with the homogeneous catalyst/enzyme composite structure by electrophoresis deposition (EPD) method.
The crystalline and particle size of nanocatalyst were investigated by XRD and TEM, respectively. The catalytic activity was obtained by the amperometric determination of HOPR. The studies of synchrotron based- X ray absorption spectroscopy (XAS) and density functional theory (DFT) calculation demonstrated that the addition of Ir atom modify the d band electronic configuration of Pt atom and enhance the nanocatalyst functionality, consequently promote the HOPR activity. Furthermore, the HOPR mechanism on the catalyst surface has been proposed and the “deprotonation“step was considered to be rate determining step via this investigation.
Moreover, EPD method has been employed to simultaneously deposit the nanocatalyst and enzyme onto the electrode surface. The depth profile analysis of ESCA provided the evidences that EPD method enables to create the homogeneous nanocatalyst/enzyme composite domain. The long term stability and the low value of Michaelis-Menten constant ( Kmapp =5.68 mM ) revealed that the composite matrix provide a stable and three dimensions structure.
After the parameter optimization, the fabricated mini-biosensor showed a linear detection of glucose ranges from 2 mM to 20 mM with a detection limit of 0.1 mM and the maximal sensitivity of 2.89 μA/mM.cm2 (R2=0.995, R.S.D. =3.26%, N=3). Overall, EPD method has been used for fabricating the homogeneous nanocatalyst/enzyme composite mini-biosensor with favorable reproducibility, stability and accuracy.

目錄 摘要 I Abstract II 致謝 III 目錄 V 圖引索 X 表引索 XVIII 第一章 緒論 1 1.1. 前言 1 1.2. 葡萄糖生物感測器之發展 2 1.3. 研究動機與目的 14 第二章 理論基礎與文獻回顧 17 2.1. 感測器簡介 17 2.2. 生物感測器簡介 18 2.2.1. 生物感測器之定義 18 2.2.2. 生物感測器之特點 18 2.2.3. 生物感測器之基本構造與原理 19 2.2.4. 生物感測元件 21 2.2.5. 信號轉能器 25 2.3. 酵素感測器 28 2.3.1. 酵素特性 28 2.3.2. 酵素單位 28 2.3.3. 酵素的分類 28 2.3.4. 酵素專一性反應 30 2.3.5. 等電點 30 2.3.6. 葡萄糖氧化酵素 31 2.4. 電化學生物感測器 33 2.4.1. 電位式(Potentiometric)生物感測器 34 2.4.2. 電流式(Amperometric)生物感測器 34 2.4.3. 電導式 (Conductometric)生物感測器 36 2.5. 生物分子固定化技術[41] 37 2.5.1. 生物分子固定化之簡介 37 2.5.2. 生物分子固定化之擔體 38 2.5.3. 生物分子固定化之方法 38 2.5.4. 吸附法 (Adsorption) 42 2.5.5. 膠囊法 (Encapsulation) 42 2.5.6. 包埋法 (Entrapment) 42 2.5.7. 化學鍵結法 (Covalent attachment) 43 2.5.8. 交連架橋法 (Cross-linking) 43 2.6. 電泳沉積法(Electrophoretic Deposition) 44 2.6.1. 電泳沉積法之演進 44 2.6.2. 電泳沉積法之原理 45 2.6.3. 電泳沉積法之動力學 48 2.6.4. 電泳沉積法之文獻回顧 49 2.6.5. 影響電泳沉積法之參數 50 2.7. 奈米粒子 50 2.7.1. 奈米粒子之簡介 50 2.7.2. 奈米粒子之製備方法 51 2.7.3. 奈米粒子在生物感測器之文獻回顧 52 第三章 實驗設備與方法 54 3.1. 實驗藥品與樣品配置 54 3.1.1. 實驗藥品 54 3.1.2. 樣品配製 55 3.2. 實驗設備 56 3.3. 微型感測器(Mini Sensor) 56 3.4. 實驗方法 59 3.4.1. 奈米金屬觸媒之合成方法 59 3.4.1.1. 擔體前處理 60 3.4.1.2. NaBH4還原方法合成Pt/C觸媒 60 3.4.1.3. NaBH4還原方法合成Ir/C觸媒 61 3.4.1.4. NaBH4還原方法合成Pt1Ir1/C 觸媒 62 3.4.1.5. 修飾Watanabe法合成Pt1Ir1/C/C-Watanabe觸媒 63 3.4.1.6. 實驗架構 65 3.4.2. 電泳沉積法沉積奈米金屬觸媒與葡萄糖氧化酵素於微型感測器之流程 66 3.4.2.1. 電泳溶液之製備 66 3.4.2.2. 電泳沉積之流程 66 3.4.2.3. 實驗架構 67 3.5. 分析儀器與方法 71 3.5.1. 觸媒元素鑑定與結構分析 71 3.5.1.1. X光繞射分析(XRD) 71 3.5.1.2. 穿透式電子顯微鏡分析(TEM) 72 3.5.1.3. 感應偶合電漿放射光譜儀分析(ICP-AES) 73 3.5.2. 微型感測器表面結構分析 73 3.5.2.1. 化學電子能譜分析儀(ESCA) 73 3.5.2.2. 掃描式電子顯微鏡分析(SEM) 73 3.5.3. 電泳溶液之物性分析 74 3.5.3.1. 表面電位分析儀 74 3.5.3.2. 導電計 75 3.5.4. 電化學分析原理 75 3.5.4.1. 旋轉電極之電化學測試系統 75 3.5.4.2. 電極製備 76 3.5.4.3. 旋轉盤電極 76 3.5.4.4. 微型感測器之電化學測試系統 78 3.5.4.5. 循環伏安法(Cyclic Voltammetry) 79 3.5.4.6. 電流應答法 (Amperometric Method) 82 第四章 結果 83 4.1. PtIr奈米金屬觸媒之材料結構與電化學特性分析 83 4.1.1. 金屬觸媒之材料結構分析 84 4.1.1.1. ICP-AES分析 84 4.1.1.2. XRD 分析 85 4.1.1.3. TEM分析 86 4.1.1.4. 循環伏安分析法 88 4.1.2. 金屬觸媒之電化學特性分析 90 4.1.2.1. 循環伏安分析 90 4.1.2.2. 滴定測試分析法(Titration Method) 94 4.1.3. 理論模擬計算分析 98 4.1.3.1. Pt (111)表面 99 4.1.3.2. 電荷轉移(charge transfer) 102 4.1.3.3. 雙氧水於Pt(111)、Ir(111)、PtIr(111)之反應 109 4.2. 藉由電泳沉積法沉積PtIr奈米金屬觸媒於微型感測器之製程參數與電化學特性分析 114 4.2.1. 電泳沉積法沉積PtIr奈米金屬觸媒於微型感測器之製程參數 118 4.2.2. 電泳沉積法沉積PtIr奈米金屬觸媒製備微型感測器之電化學特性分析 120 4.2.2.1. 電化學活性面積 120 4.2.2.2. 掃描速率效應 122 4.2.2.3. 循環伏安分析法 124 4.2.2.4. 定電位分析法 125 4.2.2.5. 微型感測器之再現性 127 4.3. 藉由電泳沉積法同時沉積PtIr奈米金屬觸媒與葡萄糖氧化酵素於微型感測器 129 4.3.1. 同時沉積PtIr奈米金屬觸媒與葡萄糖氧化酵素於微型感測器之製程參數 129 4.3.2. 藉由電泳沉積法同時沉積PtIr奈米金屬觸媒與葡萄糖氧化酵素於微型感測器之電極結構分析 131 4.3.2.1. 微型感測器之表面結構分析 134 4.3.2.2. 微型感測器之工作電極元素縱深分佈 139 4.3.3. 同時沉積PtIr奈米金屬觸媒與葡萄糖氧化酵素於微型感測器之電化學特性分析 143 4.3.3.1. 循環伏安分析法 143 4.3.3.2. 掃描速率效應 144 4.3.3.3. 最適化偵測葡萄糖之施加電位 146 4.3.3.4. 干擾測試 152 4.3.3.5. 偵測葡萄糖之最低偵測極限 155 4.3.3.6. 微型感測器之再現性與穩定性 157 4.3.3.7. 酵素催化反應動力學 160 4.3.3.8. 微型感測器之長時間保存測試 164 第五章 綜合討論 166 5.1. 奈米金屬觸媒之材料結構探討 166 5.2. 奈米金屬觸媒之電化學特性探討 167 5.3. 奈米金屬觸媒之模擬計算探討 170 5.4. 藉由電泳沉積法沉積PtIr奈米金屬觸媒於微型感測器之探討 171 5.5. 藉由電泳沉積法同時沉積PtIr奈米金屬觸媒與葡萄糖氧化酵素於微型感測器之探討 173 第六章 結論 177 第七章 未來方向 179 附錄 180 Appendix A 微型感測器之前處理的參數探討與最適化之研究 180 Appendix A.1. 不同前處理方法之比較 182 Appendix A.2. 利用定電流法前處理微型感測器-時間之影響 187 Appendix A.3. 利用定電流法前處理微型感測器-電流強度之影響 192 Appendix B 電泳沉積法沉積PtIr奈米金屬觸媒於微型感測器之製程參數 199 Appendix B.1. 電泳溶液之狀態 201 Appendix B.1.1. 電泳溶液中溶劑之比較 201 Appendix B.1.2. 電泳溶液中Nafion含量之影響 208 Appendix B.1.3. 電泳溶液中觸媒含量之影響 217 Appendix B.2. 電泳程序的條件 219 Appendix B.2.1. 定電壓法之最適化施加電壓與時間 220 Appendix B.2.2. 定電流法之最適化施加電壓與時間 228 Appendix C 同時沉積PtIr奈米金屬觸媒與葡萄糖氧化酵素於微型感測器之製程參數 237 Appendix C.1. 電泳溶液中葡萄糖氧化酵素含量之影響 239 Appendix C.2. 藉由電泳沉積法固定葡萄糖氧化酵素的沉積時間之影響 243 文獻回顧 250

1. Wang, J., "Electrochemical glucose biosensors". Chemical Reviews. 108(2): p. 814-825 (2008).
2. Leland C. Clark Jr., C.L., "ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY". Annals of the New York Academy of Sciences. 102(Automated and Semi-Automated Systems in Clinical Chemistry): p. 29-45 (1962).
3. Guilbault, G.G. and G.J. Lubrano, "An enzyme electrode for the amperometric determination of glucose". Analytica Chimica Acta. 64(3): p. 439-455 (1973).
4. Palmisano, F., D. Centonze, A. Guerrieri, and P.G. Zambonin, "An interference-free biosensor based on glucose oxidase electrochemically immobilized in a non-conducting poly(pyrrole) film for continuous subcutaneous monitoring of glucose through microdialysis sampling". Biosensors and Bioelectronics. 8(9-10): p. 393-399 (1993).
5. Sternberg, R., D.S. Bindra, G.S. Wilson, and D.K. Thevenot, "Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development". Analytical Chemistry. 60(24): p. 2781-2786 (1988).
6. Malitesta, C., F. Palmisano, L. Torsi, and P.G. Zambonin, "Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film". Analytical Chemistry. 62(24): p. 2735-2740 (1990).
7. Moussy, F., S. Jakeway, D. Jed Harrison, and R.V. Rajotte, "In vitro and in vivo performance and lifetime of perfluorinated ionomer-coated glucose sensors after high-temperature curing". Analytical Chemistry. 66(22): p. 3882-3888 (1994).
8. Wang, J. and H. Wu, "Permselective lipid-poly(o-phenylenediamine) coatings for amperometric biosensing of glucose". Analytica Chimica Acta. 283(2): p. 683-688 (1993).
9. Zhang, Y., Y. Hu, G.S. Wilson, D. Moatti-Sirat, V. Poltout, and G. Reach, "Elimination of the acetaminophen interference in an implantable glucose sensor". Analytical Chemistry. 66(7): p. 1183-1188 (1994).
10. Karyakin, A.A., E.E. Karyakina, and L. Gorton, "The electrocatalytic activity of Prussian blue in hydrogen peroxide reduction studied using a wall-jet electrode with continuous flow". Journal of Electroanalytical Chemistry. 456(1-2): p. 97-104 (1998).
11. Wang, J., G. Rivas, and M. Chicharro, "Iridium-Dispersed Carbon Paste Enzyme Electrodes". Electroanalysis. 8(5): p. 434-437 (1996).
12. Wang, J., J. Liu, L. Chen, and F. Lu, "Highly selective membrane-free, mediator-free glucose biosensor". Analytical Chemistry. 66(21): p. 3600-3603 (1994).
13. Wang, J., L. Fang, D. Lopez, and H. Tobias, "Highly Selective and Sensitive Amperometric Biosensing of Glucose at Ruthenium-Dispersed Carbon Paste Enzyme Electrodes". Analytical Letters. 26(9): p. 1819 - 1830 (1993).
14. Ming, L., X. Xi, and J. Liu, "Electrochemically platinized carbon paste enzyme electrodes: A new design of amperometric glucose biosensors". Biotechnology Letters. 28(17): p. 1341-1345 (2006).
15. Huang, J.S., D.W. Wang, H.Q. Hou, and T.Y. You, "Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH". Advanced Functional Materials. 18(3): p. 441-448 (2008).
16. 李坤易,"高感度葡萄糖生物感測器之研究 ",國立雲林科技大學化學工程系 (2006).
17. Chaubey, A. and B.D. Malhotra, "Mediated biosensors". Biosensors and Bioelectronics. 17(6-7): p. 441-456 (2002).
18. Khan, G.F., M. Ohwa, and W. Wemet, "Design of a Stable Charge Transfer Complex Electrode for a Third-Generation Amperometric Glucose Senor". Analytical Chemistry. 68(17): p. 2939-2945 (1996).
19. Palmisano, F., P.G. Zambonin, D. Centonze, and M. Quinto, "A disposable, reagentless, third-generation glucose biosensor based on overoxidized poly(pyrrole)/tetrathiafulvalene -Tetracyanoquinodimethane composite". Analytical Chemistry. 74(23): p. 5913-5918 (2002).
20. Ghindilis, A.L., P. Atanasov, and E. Wilkins, "Enzyme-Catalyzed Direct Electron Transfer: Fundamentals and Analytical Applications". Electroanalysis. 9(9): p. 661-674 (1997).
21. 黃炳照、莊睦賢, "電化學感測器". 化工技術. 第七卷(第二期) (1999).
22. Hage, D.S., Analytical Chemistry. 1999.
23. A. P. F. Turner, B.C., S. A. Piletsky, Clinical Chemistry. Vol. 45. 1596 (1999).
24. J. M.Walker, R.R.: 北京化學工業出版社 (2003).
25. Castillo, J., S. Gaspar, S. Leth, M. Niculescu, A. Mortari, I. Bontidean, V. Soukharev, S.A. Dorneanu, A.D. Ryabov, and E. Csoregi, "Biosensors for life quality: Design, development and applications". Sensors and Actuators B: Chemical. 102(2): p. 179-194 (2004).
26. D.Diamond, Chemical Analysis. Vol. 1.150, New York (1998).
27. Mohanty, S.P. and E. Kougianos, "Biosensors: a tutorial review". Potentials, IEEE. 25(2): p. 35-40 (2006).
28. Shen, J.,"Development & Characterization of thick-film printed electrochemical biosensor.",Case Western Reserve UniversityDepartment of Chemical Engineering (2007).
29. 陳冠榮,"以奈米金修飾電極製備電流式免疫型感測器",國立台灣科技大學化學工程研究所 (2008).
30. 田蔚城, 生物技術發展與應用: 九州圖書文物 (1997).
31. 陳春吉,"自主性單層薄膜電極之阻抗分析與其在內毒素檢測上之應用",國立成功大學醫學工程研究所 (2002).
32. 謝振傑, 光纖生物感測器. Vol. 廿八卷四期: 物理雙月刊 (2006).
33. D'Orazio, P., "Biosensors in clinical chemistry". Clinica Chimica Acta. 334(1-2): p. 41-69 (2003).
34. 許峰碩,"奈米碳黑在免疫層析檢測上的應用",國立中興大學化學工程研究所 (2002).
35. Spichiger-Keller, U.E., Chemical Sensors and Biosensors for Medical and Biological Applications: Wiley-VCH (1998).
36. 劉英俊, 酵素工程: 中央圖書出版社 (1995).
37. 洪爭坊、郭肇凱、張正英, 淺談酵素. Vol. 84: 台中區農情月刊 (2007).
38. 呂鋒洲,林仁混, 基礎酵素學: 聯經出版社 (1991).
39. Dai, G., J. Li, and L. Jiang, "Conformation change of glucose oxidase at the water-air interface". Colloids and Surfaces B: Biointerfaces. 13(2): p. 105-111 (1999).
40. A.J.Bard, L.F., Electrochemical Methods Fundaments and applications, New York: Wiley (2001).
41. 汪玉銘,"定電流聚合導電性高分子法製備葡萄糖生物感測器之研究",國立成功大學 化學工程學系碩博士班 (2003).
42. 洪珮珍,"奈米結構葡萄糖感測器的製備與活性分析",南台科技大學 化學工程系 (2004).
43. Yalcinkaya, F. and E.T. Powner, "Intelligent structures". Sensor Review. 16(2): p. 32-37 (1996).
44. Heineman, P.T.K.W.R., Laboratory Techniques in Electroanalytical Chemistry. 2 ed, New York: Marcel Dekker (1996).
45. Mehrvar, M. and M. Abdi, "Recent developments, characteristics, and potential applications of electrochemical biosensors". Analytical Sciences. 20(8): p. 1113-1126 (2004).
46. Gamati, S., J.H.T. Luong, and A. Mulchandani, "A microbial biosensor for trimethylamine using Pseudomonas aminovorans cells". Biosensors and Bioelectronics. 6(2): p. 125-131 (1991).
47. Jones, T.P. and M.D. Porter, "Optical pH sensor based on the chemical modification of a porous polymer film". Analytical Chemistry. 60(5): p. 404-406 (1988).
48. Zhujun, Z. and W.R. Seitz, "Optical sensor for oxygen based on immobilized hemoglobin". Analytical Chemistry. 58(1): p. 220-222 (1986).
49. Gill, I. and A. Ballesteros, "Encapsulation of biologicals within silicate, siloxane, and hybrid sol- gel polymers: An efficient and generic approach". Journal of the American Chemical Society. 120(34): p. 8587-8598 (1998).
50. Parellada, J., A. Narv?ez, E. Dom?nguez, and I. Katakis, "A new type of hydrophilic carbon paste electrodes for biosensor manufacturing: Binder paste electrodes". Biosensors and Bioelectronics. 12(4): p. 267-275 (1997).
51. Guilbault, G.G. and J.G. Montalvo, "Urea-specific enzyme electrode". Journal of the American Chemical Society. 91(8): p. 2164-2165 (1969).
52. Reddy, S.M. and P. Vadgama, "Entrapment of glucose oxidase in non-porous poly(vinyl chloride)". Analytica Chimica Acta. 461(1): p. 57-64 (2002).
53. Rajesh Vaidya, E.W., "Effect of interference on amperometric glucose biosensors with cellulose acetate membranes". Electroanalysis. 6(8): p. 677-682 (1994).
54. Li, J., L.S. Chia, N.K. Goh, and S.N. Tan, "Renewable silica sol-gel derived carbon composite based glucose biosensor". Journal of Electroanalytical Chemistry. 460(1-2): p. 234-241 (1999).
55. Cabral, J.M.S., Kennedy, J.F., Covalent and coordination immobilization of proteins. In: Taylor, R.F. (Ed.), Protein Immobilization; Fundamentals and Applications. Marcel Dekker, New York. 73–138 (1991).
56. Taylor, R.F., Development and applications of antibody- and receptor-based biosensors Bioinstrumentation: Research, Developments and Applications, ed D. L. Wise, Boston,MA;Butterworths
57. Shen, J., L. Dudik, and C.C. Liu, "An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor". Sensors and Actuators B-Chemical. 125(1): p. 106-113 (2007).
58. 鄭凱慈,"以電泳法沈積Nafion於燃料電池觸媒層之研究",國立臺灣科技大學化學工程系 (2007).
59. Hamaker, H.C. and E.J.W. Verwey, "Part II. - (C) Colloid stability. The role of the forces between the particles in electrodeposition and other phenomena". Transactions of the Faraday Society. 35: p. 180-185 (1940).
60. Hamaker, H.C., "Formation of a deposit by electrophoresis". Transactions of the Faraday Society. 35: p. 279-287 (1940).
61. Hamaker, H.C., "The influence of particle size on the physical behaviour of colloidal systems". Transactions of the Faraday Society. 35: p. 186-192 (1940).
62. Van Tassel, J. and C.A. Randall, "Electrophoretic deposition and sintering of thin/Thick PZT films". Journal of the European Ceramic Society. 19(6-7): p. 955-958 (1999).
63. Hamaker, Physical (1937).
64. Sarkar, P., D. De, and H. Rho, "Synthesis and microstructural manipulation of ceramics by electrophoretic deposition". Journal of Materials Science. 39(3): p. 819-823 (2004).
65. Sarkar, P. and P.S. Nicholson, "Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics". Journal of the American Ceramic Society. 79(8): p. 1987-2002 (1996).
66. Koelmans, H. and J.T.G. Overbeek, "Stability and electrophoretic deposition of suspensions in non-aqueous media". Discussions of the Faraday Society. 18: p. 52-63 (1954).
67. Grillon, F., D. Fayeulle, and M. Jeandin, "Quantitative image analysis of electrophoretic coatings". Journal of Materials Science Letters. 11(5): p. 272-275 (1992).
68. Besra, L. and M. Liu, "A review on fundamentals and applications of electrophoretic deposition (EPD)". Progress in Materials Science. 52(1): p. 1-61 (2007).
69. 尹邦躍, Nano 奈米時代: 五南書局
70. 陳光華,鄧金祥, 奈米薄膜技術與應用: 五南出版社 (2005).
71. 郭清癸,黃俊傑,牟中原, 金屬奈米粒子的製造: 國立台灣大學化學系及凝態中心物理雙月刊,廿三卷六期 (2001).
72. 王世敏,許祖勛,傅晶, 奈米材料原理與製備: 五南出版社 (2004).
73. Yonezawa, Y., T. Sato, S. Kuroda, and K. Kuge, "Photochemical formation of colloidal silver: Peptizing action of acetone ketyl radical". Journal of the Chemical Society, Faraday Transactions. 87(12): p. 1905-1910 (1991).
74. Okitsu, K., H. Bandow, Y. Maeda, and Y. Nagata, "Sonochemical preparation of ultrafine palladium particles". Chemistry of Materials. 8(2): p. 315-317 (1996).
75. Antolini, E. and F. Cardellini, "Formation of carbon supported PtRu alloys: An XRD analysis". Journal of Alloys and Compounds. 315(1-2): p. 118-122 (2001).
76. Takasu, Y., T. Fujiwara, Y. Murakami, K. Sasaki, M. Oguri, T. Asaki, and W. Sugimoto, "Effect of structure of carbon-supported PtRu electrocatalysts on the electrochemical oxidation of methanol". Journal of the Electrochemical Society. 147(12): p. 4421-4427 (2000).
77. Watanabe, M., M. Uchida, and S. Motoo, "Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol". Journal of Electroanalytical Chemistry. 229(1-2): p. 395-406 (1987).
78. Hamnett, A., B.J. Kennedy, and F.E. Wagner, "PtRu anodes for methanol electrooxidation: A ruthenium-99 Mo?ssbauer study". Journal of Catalysis. 124(1): p. 30-40 (1990).
79. Wang, X. and I.M. Hsing, "Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells". Electrochimica Acta. 47(18): p. 2981-2987 (2002).
80. Liu, Z., J.Y. Lee, W. Chen, M. Han, and L.M. Gan, "Physical and Electrochemical Characterizations of Microwave-Assisted Polyol Preparation of Carbon-Supported PtRu Nanoparticles". Langmuir. 20(1): p. 181-187 (2004).
81. Zhang, X. and K.Y. Chan, "Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles, their characterization and electrocatalytic properties". Chemistry of Materials. 15(2): p. 451-459 (2003).
82. Nalwa, H.S., Academic press. 2000.
83. 張義泉,"具界面活性擬樹枝狀聚乙烯亞胺之合成與製備燃料電池觸媒之應用",國立成功大學化學工程研究所 (2005).
84. Reetz, M.T., W. Helbig, and S.A. Quaiser, "Electrochemical Preparation of Nanostructural Bimetallic Clusters". Chemistry of Materials. 7(12): p. 2227-2228 (1995).
85. Reetz, M.T. and S.A. Quaiser, "A new method for the preparation of nanostructured metal clusters". Angewandte Chemie (International Edition in English). 34(20): p. 2240-2241 (1995).
86. Shimazu, K., D. Weisshaar, and T. Kuwana, "Electrochemical dispersion of Pt microparticles on glassy carbon electrodes". Journal of Electroanalytical Chemistry. 223(1-2): p. 223-234 (1987).
87. 胡啟章, 電化學原理與方法: 五南圖書出版公司 (2002).
88. 彭文權,"以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒",元智大學化學工程學系 (1997).
89. R.Brian , E., Chemical Sensors and Biosensors (2005).
90. Chang, S.H., Yeh, M. H., Hwang, B. J., Liu, C.C., Liu, D. G., Tang, M. T. and Lee, J. F., "Electrocatalytic oxidation of hydrogen peroxide on Pt-Ir/C nanoparticles". Electrochemistry communications (in preparation) (2009).
91. Kresse, G. and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method". Physical Review B - Condensed Matter and Materials Physics. 59(3): p. 1758-1775 (1999).
92. Hu, P., D.A. King, S. Crampin, M.H. Lee, and M.C. Payne, "Gradient corrections in density functional theory calculations for surfaces: Co on Pd{110}". Chemical Physics Letters. 230(6): p. 501-506 (1994).
93. Blochl, P.E., "Projector augmented-wave method". Physical Review B. 50(24): p. 17953-17979 (1994).
94. Perdew, J.P., J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation". Physical Review B. 46(11): p. 6671-6687 (1992).
95. Payne, M.C., M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, "Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients". Reviews of Modern Physics. 64(4): p. 1045-1097 (1992).
96. Vanderbilt, D., "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism". Physical Review B. 41(11): p. 7892-7895 (1990).
97. Ziesche, P., Electronic Structure of Solids (1991).
98. Kresse, G. and J. Furthmuller, "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set". Computational Materials Science. 6(1): p. 15-50 (1996).
99. Kresse, G. and J. Furthmuller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set". Physical Review B - Condensed Matter and Materials Physics. 54(16): p. 11169-11186 (1996).
100. Kresse, G. and J. Hafner, "Ab initio molecular dynamics for liquid metals". Physical Review B. 47(1): p. 558-561 (1993).
101. Balbuena, P.B., S.R. Calvo, E.J. Lamas, P.F. Salazar, and J.M. Seminario, "Adsorption and dissociation of H2O2 on Pt and Pt - Alloy clusters and surfaces". Journal of Physical Chemistry B. 110(35): p. 17452-17459 (2006).
102. Gajdos, M., A. Eichler, and J. Hafner, "CO adsorption on close-packed transition and noble metal surfaces: Trends from ab initio calculations". Journal of Physics Condensed Matter. 16(8): p. 1141-1164 (2004).
103. Lee, S.-H., H.-Y. Fang, and W.-C. Chen, "Amperometric glucose biosensor based on screen-printed carbon electrodes mediated with hexacyanoferrate-chitosan oligomers mixture". Sensors and Actuators B: Chemical. 117(1): p. 236-243 (2006).
104. Johnson, K.W., Immobilisation of bio-molecules on an electrode - by applying variable potential across bio-sensor electrode and counter electrode in soln. of bio-molecules. 1992, LILLY & CO ELI (ELIL) JOHNSON K W (JOHN-Individual).
105. Michael L. Bishop, E.P.F., and Larry Schoeff. Baltimore, MD, Clinical Chemistry: Principles, Procedures, Correlations: Lippincott Williams & Wilkins (2005).
106. Chi, Q. and S. Dong, "Flow-injection analysis of glucose at an amperometric glucose sensor based on electrochemical codeposition of palladium and glucose oxidase on a glassy carbon electrode". Analytica Chimica Acta. 278(1): p. 17-23 (1993).
107. Kamin, R.A. and G.S. Wilson, "Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer". Analytical Chemistry. 52(8): p. 1198-1205 (1980).
108. Chen, X., J. Jia, and S. Dong, "Organically modified sol-gel/chitosan composite based glucose biosensor". Electroanalysis. 15(7): p. 608-612 (2003).
109. Wu, B.Y., S.H. Hou, F. Yin, J. Li, Z.X. Zhao, J.D. Huang, and Q. Chen, "Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode". Biosensors and Bioelectronics. 22(6): p. 838-844 (2007).
110. Zeng, X., X. Li, L. Xing, X. Liu, S. Luo, W. Wei, B. Kong, and Y. Li, "Electrodeposition of chitosan-ionic liquid-glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing". Biosensors and Bioelectronics. 24(9): p. 2898-2903 (2009).
111. Lima, F.H.B., J. Zhang, M.H. Shao, K. Sasaki, M.B. Vukmirovic, E.A. Ticianelli, and R.R. Adzic, "Catalytic activity - d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions". Journal of Physical Chemistry C. 111(1): p. 404-410 (2007).
112. Stamenkovic, V., B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, and J.K. N?rskov, "Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure". Angewandte Chemie - International Edition. 45(18): p. 2897-2901 (2006).
113. Hwang, B.J., S.M.S. Kumar, C.H. Chen, R.W. Chang, D.G. Liu, and J.F. Lee, "Size and alloying extent dependent physiochemical properties of Pt-Ag/C nanoparticles synthesized by the ethylene glycol method". Journal of Physical Chemistry C. 112(7): p. 2370-2377 (2008).
114. Tsai, Y.C., S.C. Li, and J.M. Chen, "Cast thin film biosensor design based on a nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function". Langmuir. 21(8): p. 3653-3658 (2005).
115. Mignani, A., E. Scavetta, and D. Tonelli, "Electrodeposited glucose oxidase/anionic clay for glucose biosensors design". Analytica Chimica Acta. 577(1): p. 98-106 (2006).
116. Kang, Q., L. Yang, and Q. Cai, "An electro-catalytic biosensor fabricated with Pt-Au nanoparticle-decorated titania nanotube array". Bioelectrochemistry. 74(1): p. 62-65 (2008).
117. Lu, J., L.T. Drzal, R.M. Worden, and I. Lee, "Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane". Chemistry of Materials. 19(25): p. 6240-6246 (2007).
118. Lim, S.H., J. Wei, J. Lin, Q. Li, and J. KuaYou, "A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode". Biosensors and Bioelectronics. 20(11): p. 2341-2346 (2005).
119. Qiu, J.D., R. Wang, R.P. Liang, and X.H. Xia, "Electrochemically deposited nanocomposite film of CS-Fc/Au NPs/GOx for glucose biosensor application". Biosensors and Bioelectronics. 24(9): p. 2920-2925 (2009).
120. Sakslund, H., J. Wang, F. Lu, and O. Hammerich, "Development and evaluation of glucose microsensors based on electrochemical codeposition of ruthenium and glucose oxidase onto carbon fiber microelectrodes". Journal of Electroanalytical Chemistry. 397(1-2): p. 149-155 (1995).
121. Wei, H., J.J. Sun, Y. Xie, C.G. Lin, Y.M. Wang, W.H. Yin, and G.N. Chen, "Enhanced electrochemical performance at screen-printed carbon electrodes by a new pretreating procedure". Analytica Chimica Acta. 588(2): p. 297-303 (2007).
122. Wang, J., M. Pedrero, H. Sakslund, O. Hammerich, and J. Pingarron, "Electrochemical activation of screen-printed carbon strips". Analyst. 121(3): p. 345-350 (1996).
123. Ferrari, B. and R. Moreno, "Electrophoretic deposition of aqueous alumina slips". Journal of the European Ceramic Society. 17(4): p. 549-556 (1997).
124. Negishi, H., K. Yamaji, N. Sakai, T. Horita, H. Yanagishita, and H. Yokokawa, "Electrophoretic deposition of YSZ powders for solid oxide fuel cells". Journal of Materials Science. 39(3): p. 833-838 (2004).
125. Moreno, R. and B. Ferrari, "Effect of the slurry properties on the homogeneity of alumina deposits obtained by aqueous electrophoretic deposition". Materials Research Bulletin. 35(6): p. 887-897 (2000).
126. Munakata, H., T. Ishida, and K. Kanamura, "Electrophoretic deposition for nanostructural design of catalyst layers on nafion membrane". Journal of the Electrochemical Society. 154(12) (2007).
127. Fan, Z. and D.J. Harrison, "Permeability of glucose and other neutral species through recast perfluorosulfonated ionomer films". Analytical Chemistry. 64(11): p. 1304-1310 (1992).
128. Wang, J., M. Musameh, and Y. Lin, "Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors". Journal of the American Chemical Society. 125(9): p. 2408-2409 (2003).
129. Hara, M., T. Yoshida, A. Takagaki, T. Takata, J.N. Kondo, S. Hayashi, and K. Domen, "A carbon material as a strong protonic acid". Angewandte Chemie - International Edition. 43(22): p. 2955-2958 (2004).
130. Basu, R.N., C.A. Randall, and M.J. Mayo, "Fabrication of Dense Zirconia Electrolyte Films for Tubular Solid Oxide Fuel Cells by Electrophoretic Deposition". Journal of the American Ceramic Society. 84(1): p. 33-40 (2001).
131. Wang, Y.C., I.C. Leu, and M.H. Hon, "Kinetics of electrophoretic deposition for nanocrystalline zinc oxide coatings". Journal of the American Ceramic Society. 87(1): p. 84-88 (2004).
132. Augustinik, A.I., V.S. Vigdergauz, and G.I. Zharavlev, "Electrophoretic deposition of ceramic masses from suspensions and calculation of deposit yields". J. Appl. Chem. 35(10): p. 2175-2180 (1962).

QR CODE