簡易檢索 / 詳目顯示

研究生: 李承益
CHENG-YI LI
論文名稱: 抗彎消能斜撐構架耐震性能評估分析與隅撐型抗彎消能斜撐試驗研究
Seismic Performance Evaluations of Naturally Buckling Braced Frame Systems and Experimental Development of Natural Buckling Braces with Inner Bracing Plates
指導教授: 蕭博謙
Po-Chien Hsiao
口試委員: 林克強
Ker-Chun Lin
陳垂欣
Chui-Hsin Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 227
中文關鍵詞: 同心斜撐構架耐震評估角隅板寬厚比
外文關鍵詞: Concentrically brace frame, Seismic performance evaluation, Bracing plates, local slenderness ratio
相關次數: 點閱:209下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地震頻繁,因此結構耐震性能相當重要,安裝斜撐就是一種常見的提升結構耐震性能的方法之一。然而經研究發現,傳統斜撐有在挫屈後強度大幅度下降和韌性不佳等缺陷,因此開發名為「抗彎消能斜撐(Naturally Buckling Brace,NBB)」之新型斜撐,並在前期單軸試驗以及子構架試驗中,證實抗彎消能斜撐能改善韌性不佳缺點以及延後挫屈的發生,在分析研究後對於構件本身強度、勁度估算以及行為已有一定程度的了解。本文將對抗彎消能斜撐中在構架中之行為和耐震性能進行研究,首先提出抗彎消能斜撐構件與構架之設計流程,利用有限元素分析軟體OpenSees分別設計三種樓高等級的解析模型,並在各樓高之結構分別設計使用傳統斜撐以及抗彎消能斜撐之構架,以非線性動態歷時分析後比較並量化使用抗彎消能斜撐構架之耐震性能,證實抗彎消能斜撐構架能更有效降低樓層位移角和加速度反應,且有正的降伏後勁度,能降低應變集中的影響。設計構架時發現,因高樓層設計強度較低,所以抗彎消能斜撐使用較薄之鋼板以降低強度,但同時也放大了斜撐寬厚比,在前期試驗中發現隨著寬厚比的增加會對抗彎消能斜撐有不良影響,為改善寬厚比過大問題,提出「隅撐型抗彎消能斜撐」之設計概念並進行試驗,證實隅撐型抗彎消能斜撐能延緩挫屈的發生和該設計之可行性,且藉由本次試驗結果提出有效寬厚比轉換方式,提出依試體之有效寬厚比與細長比估算局部挫曲前最大軸向位移、挫屈強度以及累積塑性變形之公式,並使用OpenSees與Abaqus建立試驗中試體模型進行模擬,將模擬與試驗結果比較後提出建議之建立模型方法與設定,最後規劃以角隅板開孔為變數之分析研究,提出在角隅板上開孔較有效之建議方式。


    There are frequent earthquakes in Taiwan, so the seismic performance of the structure is very important. Installing braces is one of the common ways to improve the seismic performance of the structure. However, studies have found that traditional brace has the defects of a large decrease in strength after buckling and low ductility. Therefore, a new type of brace called "Naturally Buckling Brace (NBB)" has been developed. In the previously uniaxial test of component and sub-frame test, it is proved that the NBB can improve the defects of low ductility and delay the occurrence of buckling. After the analysis and research, there is already a certain degree of strength, stiffness estimation, and behavior of the NBB. This paper will study the behavior and seismic performance of NBB in the frame. First, the design process of NBB components and frames is proposed. The finite element analysis software OpenSees is used to design the analytical models of three building height levels, and the structure of each building height is designed separately. Using a traditional brace and NBB, after Nonlinear dynamic time history analysis, the seismic performance of the NBB frame is compared and quantified. It is found that the NBB frame can more effectively reduce the story drift and acceleration response, and It has a positive post-yield stiffness, which can reduce the effect of strain concentration. When designing the structure, it was found that because the high-floor design strength is low, NBB uses thinner steel plates to reduce the strength, but at the same time, it also enlarges the local slenderness ratio. In the previous tests, it was found that the increase in the local slenderness ratio would have a negative effect on the NBB. In order to improve the problem of excessive local slenderness ratio, the design concept of "Natural Buckling Braces with inner bracing plates" was proposed and tested, and it was found that it can delay the occurrence of local buckling and the feasibility of the design. Based on the results of this experiment, the effective local slenderness ratio conversion method is proposed, and formulas for estimating the maximum axial drift, buckling strength and CPD before local buckling based on the effective local slenderness ratio and slenderness ratio of the specimen are proposed. Use OpenSees and Abaqus to establish the test body model for simulation, and plan the analysis and research with the bracing plate opening as a variable, and propose a more effective way of opening the bracing plate.

    目錄 摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 xii 照片目錄 xiv 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文內容與架構 3 第二章 文獻回顧 5 2.1 基礎力學行為 5 2.2 前期單軸試驗研究 6 2.3 前期子構架試驗研究 7 第三章 抗彎消能斜撐構架系統設計流程與耐震性能評估分析 11 3.1 構件與構架設計方法與流程 11 3.1.1 抗彎消能斜撐構件設計流程 11 3.1.2 抗彎消能斜撐構架系統設計流程 13 3.2 原型建築物設計 13 3.3 分析方法及解析模型 16 3.3.1 非線性側推分析 16 3.3.2 非線性動態歷時分析 16 3.3.3 解析模型建置 17 3.4 構架系統非線性側推分析結果 18 3.5 構架系統非線性動態歷時分析結果 18 3.5.1 三層樓原型建築物 19 3.5.2 九層樓原型建築物 19 3.5.3 二十層樓原型建築物 20 3.5.4 分析結果比較與討論 20 3.5.4.1 樓層位移角、殘餘樓層位移角、樓層加速度、樓層剪力 20 3.5.4.2 構件降伏狀況 21 第四章 隅撐型抗彎消能斜撐試驗研究 25 4.1 試體設計概念 25 4.2 試驗規劃 26 4.2.1 試體介紹 26 4.2.2 試驗設備與配置 27 4.2.2.1 試驗配置 27 4.2.2.2 外力加載系統 28 4.2.2.3 量測系統 28 4.2.3 試驗方法與內容 29 4.2.4 試體製作、安裝與試驗前準備 30 4.3 試驗觀察與結果 32 4.3.1 試體NP45 32 4.3.2 試體NP30 33 4.3.3 試體P45 33 4.3.4 試體P30 34 4.4 試驗結果討論 35 4.4.1 各試體遲滯迴圈比較 35 4.4.2 強度、勁度比較與計算 36 4.4.3 累積塑性變形 38 4.4.4 累積消散能量 39 4.4.5 有效寬厚比 39 4.4.6 最大軸向位移估算 40 4.4.7 挫屈強度比估算 40 4.4.8 累積塑性變形估算 41 第五章 隅撐型抗彎消能斜撐試驗有限元素分析與研究 42 5.1 有限元素分析研究目的 42 5.2 OpenSees有限元素分析與研究 42 5.2.1 分析模型介紹 42 5.2.2 分析與試驗結果比較與討論 43 5.3 Abaqus有限元素分析與研究 44 5.3.1 分析模型介紹 44 5.3.2 分析與試驗結果比較與討論 45 5.4 角隅板開孔分析與研究 45 5.4.1 角隅板開孔位置分析與研究 45 5.4.2 角隅板開孔數量分析與研究 46 第六章 結論與建議 48 6.1 結論 48 6.2 建議 50 參考文獻 52

    參考文獻
    [1] Popov, E. P., Takanashi, K., and Roeder, C. W. (1976). “Structural steel bracing systems.” EERC Rep. 76–17, Univ. of California, Berkeley, CA.
    [2] Black, G. R., Wenger, B. A., and Popov, E. P. (1980). “Inelastic buckling of steel struts under cyclic load reversals.” UCB/EERC-80/40, Earthquake Engineering Research Center, Univ. of California, Berkeley, CA.
    [3] Tremblay, R., Archambault, M.-H., and Filiatrault, A. (2003). “Seismic response of concentrically braced steel frames made with rectangular hollow bracing members.” J. Struct. Eng., 10.1061/(ASCE)0733-9445 (2003)129:12(1626), 1626–1636.
    [4] Lehman, D. E., and Roeder, C. W. (2008). “Improved seismic design of concentrically braced frames and gusset plate connections.” Proc., Structures Congress 2008, ASCE, Reston, VA, 1–10.
    [5] Hsiao, P. C., Lehman, D. E., and Roeder, C. W. (2013). “A model to simulate special concentrically braced frames beyond brace fracture.” Earthquake Eng. Struct. Dyn., 42(2), 183–200.
    [6] Hsiao PC, Lehman DE, Roeder CW. Evaluation of the Response Modification Coefficient and Collapse Potential of SCBFs. Earthquake Engineering & Structural Dynamics 2013;42(10):1547-1564.
    [7] Hsiao PC, Liao WC. Effects of Hysteretic Properties of Stud-type Dampers on Seismic Performance of Steel Moment Resisting Frame Buildings. J. of Structural Engineering, ASCE 2019;145(7).
    [8] Hsiao, P.C. et al. (2016). “Development and Testing of Naturally Buckling Steel Braces.” Journal of Structural Engineering, ASCE, 142(1).
    [9] Inamasu H. et al. (2017). “Gusset Plate Connections for Naturally Buckling Braces.” Journal of Structural Engineering, ASCE, 143(8).
    [10] Hsiao, P.C. et al. (2019). “Slenderness Effect in Naturally Buckling Braces Under Seismic Loads.” Journal of Structural Engineering, ASCE, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002612.
    [11] Hsiao, P.C. et al. (2020). “Effect of Far-Field and Near-Fault Cyclic Loadings on Seismic Performance of Naturally Buckling Braces in Pairs.” https://doi.org/10.1016/j.engstruct.2020.110668.
    [12] Astaneh-Asl et al. (2006). “Seismic Detailing of Gusset Plates for Special Concentrically Braced Frames.” Steel TIPS.
    [13] Tremblay R, Archambault MH, Filiatrault A. Seismic Response of Concentrically Braced Steel Frames Made with Rectangular Hollow Bracing Members. Journal of Structural Engineering, ASCE 2003;129(12):1626-1636.
    [14] Chen CH, Hu HK. Evaluation of loading sequences on testing capacity of concentrically braced frame structures. Journal of Constructional Steel Research 2017;130:1-11.
    [15] Alavi A, Krawinkler H. Effects of near-fault ground motions on frame structures. John A. Blume Earthquake Engineering Center Report No. 138, Stanford University, February 2001.
    [16] ASCE/SEI 7-10, (2010). “Minimum Design Loads for Buildings and Other Structures”, Reston, Virginia, USA.
    [17] FEMA P695 Quantification of building seismic performance factors FEMA P695 ATC-63 project report. Federal Emergency Management Agency, Washington, D.C., 2008.
    [18] Jain, A. K., Goel, S. C., and Hanson, R. D. (1978). “Inelastic response of restrained steel tubes.” J. Struct. Div., 104(6), 897–910.
    [19] Tremblay, R. (2002). “Inelastic seismic response of steel bracing members.” J. Constr. Steel Res., 58(5–8), 665–701.
    [20] SEAOC blue book, (1999). “Recommended Lateral Force Requirements and Commentary” ,Structural Engineering Association of California (SEAOC), 7th Edition, Sacramento, CA.
    [21] ANSI/AISC 360-16, (2016). “Specification for Structural Steel Building”, Chicagi, Illinois, USA.
    [22] B.Shaback, T.Brown, (2003). “Behavior of square hollow structural steel braces with end connections under reversed cyclic axial loading.” https://doi.org/10.1139/l03-028
    [23] Hsiao PC,(2012). “Seismic Performance Evaluation of Concentrically Braced Frames”,University of Washington.
    [24] 林坤賢 (2019). “核心型抗彎間柱構件耐震行為試驗與分析”, 國立中興大學土木工程研究所碩士論文
    [25] 鄭宇廷 (2020). “抗彎矩消能斜撐構件與構架耐震行為與分析” , 國立中興大學土木工程研究所碩士論文

    QR CODE