簡易檢索 / 詳目顯示

研究生: 范氏惠支
PHAM - THI HUE CHI
論文名稱: 依越南規範設計之結構物耐震評估
Seismic Performance Evaluation of RC Structures Designed by Vietnamese Code
指導教授: 鄭 蘩
Van Jeng
口試委員: 黃慶東
none
陳瑞華
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 210
中文關鍵詞: 越南耐震設計規範RC建築物磚造建築物非線性分析
外文關鍵詞: Vietnamese Seismic Design Code, RC Frames, Brick Walls, Nonlinear Analysis
相關次數: 點閱:321下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在今日之越南,建築物在地震下之表現越來越受重視,最近公佈之越南結構設計耐震規範即為了支持工程師處理這方面的問題。此外,中低高度之結構物在越南甚為普遍。本文之重點為 (1)比較研究越南規範與美國規範 (2)評估越南鋼筋混凝土建築物之耐震行為 (3)探討磚造對建築物之耐震能力。

    依越南及美國規範設計之三種不同高度之建築物(五層、十層及十五層)為本研究之研究用建築物,將使用能量震譜法和側推分析進行研究,最後利用非線性歷時分析來評估建築物之耐震能力。
    本研究之結論:
    1.依越南規範設計之越南建築物被證實在設計地震力作用下表現良好,可承受更大的地震力。

    2.磚牆可改變建築物使得其有更好的耐震能力,尤其對低矮建築物特別有效。

    3.側推分析可有效掌握越南建築物之耐震行為。

    4.美國建築物在設計地震作用下能承受更大之非線性變形。


    The seismic performances of buildings are paid much more attention in design practice in Viet Nam. The Design of Structures for Earthquake Resistance (TCXDVN 375:2006) code is newly issued in Viet Nam to support engineers to deal with these problems. Besides, low-rise and medium-rise buildings with brick walls are popular in this country. Our intentions here are: (1) to comparatively study the Vietnamese and American codes (UBC 1997), (2) to evaluate the seismic behavior of RC buildings in Viet Nam by applying nonlinear analysis procedures, (3) to access the effects of brick walls on seismic performances of these buildings.
    Building with different heights (5-story, 10-story and 20-story) and two different locations (Viet Nam which is low seismic hazard region and America which is high seismic hazard region) are adopted in this study. First, these frames are designed based on TCXDVN 356:2006 and UBC 1997. Then, these frames with their linear and nonlinear properties according to guidelines in ATC-40 are modeled. The nonlinear procedures (pushover and time history analyses) applied to these buildings are operated by using Sap 2000 program. The Capacity Spectrum Method presented in ATC-40 is implemented as the nonlinear static method here. In addition, brick walls are modeled as equivalent struts to construct the brick-infilled frames which are also analyzed by nonlinear analysis methods.
    The conclusions of the study are: (1) the Vietnamese buildings are proved quite strong for design ground motions; therefore, they may endure the larger ground motions, (2) brick walls can contribute to the better performances of the brick-infilled frames compared to the bare frames, especially the low-rise buildings 5-story high, (3) the comparison of global displacement demands for ground shakings determined by the pushover and time history analysis procedures suggests that the pushover analysis can be the efficient method to capture inelastic performances of structures for ground motions with low and medium intensities in Viet Nam, (4) contrary to Vietnamese buildings, the American buildings suffer much more inelastic behaviors for design ground motions.
    Keywords: Vietnamese seismic design code, RC frames, brick walls, nonlinear analysis.

    Abstract ………………………………………………………………...i Acknowledgements …………………………………………………….iii Table of Contents ………………………………………………………iv List of Figures……………………………………………………….....ix List of Tables …………………………………………………………...xii List of Notations ………………………………………………………..xiv Chapter 1: Introduction ………………………………………………1 1.1Overview ……………………………………………………….......1 1.2Objectives and Scope …………………………………………........3 1.3Organizations …………………………………………………........4 Chapter 2: Vietnamese Seismic Design Codes for Buildings and 6 Uniform Building Code (UBC) 1997 ………………………………… 2.1Guideline for Calculating Earthquake Load Presented in High-rise Building – Guide for Design of Monolithic Reinforced Concrete Structures – TCXD 198-1997 ………………………………........6 2.2Design of Structures for Earthquake Resistance – TCXDVN 375: 2006 (General Rules, Seismic Actions and Rules for Buildings) 8 2.2.1Fundamental Requirements ………………………………..8 2.2.2Compliance Criteria………………………………..............8 2.2.3Ground Conditions ………………………………................8 2.2.4Seismic Action Characteristics …………………………….8 2.2.4.1Seismic Action Levels ……………………………8 2.2.4.2Seismic Zones ………………………………........9 2.2.4.3Elastic Response Spectrum ……………………….9 2.2.4.4Design Spectrum for Elastic Analysis ……………10 2.2.4.5Time-history Representation of Seismic Action 11 2.2.4.6The Inertial Effects of the Design Seismic Action12 2.2.5Characteristics of Structures ………………………………12 2.2.5.1Importance Classes and Importance Factors ……..12 2.2.5.2Criteria for Structural Regularity …………………12 2.2.5.3The Behavior Factor, q …………………………...13 2.2.6Selection of Method of Analysis …………………………..13 2.2.6.1Linear Elastic Methods …………………………..14 2.2.6.2Nonlinear Methods ……………………………….14 2.2.7Lateral Force Method of Analysis …………………………14 2.2.7.1Fundamental Period of Building, T1 ……………...14 2.2.7.2Base Shear Force …………………………………15 2.2.7.3Distribution of the Horizontal Seismic Forces16 2.2.8Modal Response Spectrum Analysis ………………………16 2.2.7.4Base Shear Force for Mode i ……………………..16 2.2.7.5The Number of Modes Required in Using Modal 16 Response Analysis……………………………….. 2.2.7.6Combination of Modal Responses ………………..17 2.2.9Accidental Torsional Effects ……………………………….17 2.2.10Inter-storey Drift …………………………………………...18 2.2.10.1Calculation of Inter-storey Drift ………………….18 2.2.10.2Limitation of Inter-storey Drift …………………..18 2.3Uniform Building Codes 1997 …………………………………….19 2.3.1Soil Profile Type …………………………………………...19 2.3.2Seismic Action Characteristics …………………………….19 2.3.2.1Seismic Action Levels ……………………………19 2.3.2.2Seismic Zones …………………………………….20 2.3.2.3Seismic Response Coefficients …………………...20 2.3.2.4Elastic Design Response Spectrum ………………20 2.3.2.5Time-history Representation of Seismic Action20 2.3.2.6The Seismic Dead Load …………………………..21 2.3.3Characteristics of Structures ……………………………….21 2.3.3.1Occupancy Categories ……………………………21 2.3.3.2Configuration Requirements ……………………..21 2.3.3.3Seismic Factors …………………………………...21 2.3.4Selection of Lateral – force Procedure ……………………..22 2.3.4.1Simplified Static Lateral – force Procedure ……...22 2.3.4.2Static Lateral – force Procedure ………………….22 2.3.4.3Dynamic Lateral – force Procedure ………………22 2.3.5Simplified Static Lateral – force Procedure ……………….23 2.3.6Static Lateral - force Procedure ……………………………23 2.3.6.1Fundamental Period of Building, T1 ……………..23 2.3.6.2Design Base Shear ……………………………….24 2.3.6.3Vertical Distribution of Forces …………………...24 2.3.7Response Spectrum Analysis ………………………………25 2.3.7.1Response Spectrum Representation and …………. Interpretation of Results …………………………25 2.3.7.2Number of Modes25 2.3.7.3Combining Modes………………………………...25 2.3.7.4Reduction of Elastic Response Parameters for 26 Design …………………………………………… 2.3.8Accidental Torsional Effects ……………………………….26 2.3.9Inter-storey Drift …………………………………………...27 2.2.9.1Calculation of Inter-storey Drift ………………….27 2.2.9.2Limitation of Inter-storey Drift …………………..27 2.4Comparative Study of Seismic Design Codes …………………….27 2.4.1Base Shear Force …………………………………………..27 2.4.2Vertical Distribution of Lateral Forces …………………….28 2.4.3Story Drift Limitation ……………………………………...29 2.4.4Fundamental Period of Building …………………………...30 2.4.5Elastic Design Response Spectrum ………………………..30 Chapter 3: Nonlinear Analysis Procedures for Seismic Performance44 Evaluation of Reinforced Concrete Frames …………………………. 3.1Modeling of Members ……………………….. ……………………44 3.1.1Initial Stiffness of Structural Elements ……………………..45 3.1.2Nonlinear Properties of Structural Elements ……………….45 3.1.3Unreinforced Brick Wall ……………………….. ………….47 3.1.3.1The Modeling Approach and Force-deformation 48 Relation for Brick Walls …………………………. 3.1.3.2The Hysteretic Model for Brick Infill in Frame 50 Under Cyclic Loading ……………………………. 3.2Nonlinear Static Analysis (Pushover Analysis) …………………....52 3.2.1Overview …………………....………………....……………52 3.2.2The Steps of Pushover Analysis ………………….................53 3.2.3The Capacity Spectrum Method in ATC-40 ………………..54 3.3Nonlinear Dynamics Analysis (Time History Analysis) …………..57 Chapter 4: Case Study: Nonlinear Analysis of RC Moment -66 resisting Frames With and Without Brick Walls 4.1Description of Frames …………………....………………....……...66 4.2Structural Modeling …………………....………………....……......67 4.3Ground Motions …………………....………………....……............68 4.4Pushover Analysis Results …………………....………………....…68 4.4.1Capacity Curves of Frames …………....………………........68 4.4.2Structural Displacement Demands for Ground Motions ……70 4.4.2.1Buildings in Viet Nam…………………....………..70 4.4.2.2Buildings in America …………………....………...72 4.5Time History Analysis Results …………………....………………..73 4.5.1Buildings in Viet Nam …………………....………………...73 4.5.2Buildings in America …………………....……………….....76 Chapter 5: Conclusions ………………………….......................86 References88 Appendix A: Design Information of Reinforced Concrete Frames A-1 Applied TCXDVN 375-2006 and UBC 1997 …………. Appendix B: Characteristics of Design Ground Motions B-1 in Viet Nam and America ……………………………... Appendix C: Displacement Demands of Bare and Brick-infilled C-1 Frames in Viet Nam and America Estimated by Pushover Analysis and Time History Analysis ……….

    1Applied Technology Council, “Seismic Evaluation & Retrofit of Concrete Buildings”, ATC-40, Report No SSC 96-01, 1996.
    2Building Seismic Safety Council. NEHRP “Guidelines for the Seismic Rehabilitation of Buildings”, FEMA-273. Federal Emergency Management Agency: Washington, DC, 1997.
    3Building Seismic Safety Council. NEHRP “Pre-standard and Commentary for the Seismic Rehabilitation of Buildings”, FEMA-356. Federal Emergency Management Agency: Washington, DC, 2000.
    4Joseph M. Bracci, Sashi K. Kunnath, Andrei M. Reihorn, “Seismic Performance and Retrofit Evaluation of Reinforced Concrete Structures”, Journal of Structural Engineering, Vol. 123, No. 1, 1997.
    5Cheng, L.W., “A Seismic Experiment and Equivalent Truss Analysis for Brick Wall with Boundary RC Frame”, Master Thesis, National Chengkung University, Taiwan, 1995.
    6Chopra AK., “Dynamics of Structures: Theory and Applications to Earthquake Engineering”, Prentice-Hall: Englewood Cliffs, NJ, 2001.
    7Chopra AK, Goel RK., “A Modal Pushover Analysis Procedure for Estimating Seismic Demands for Buildings”’ Earthquake Engng Struct. Dyn. 2002; 31:561–582.
    8Ray W. Clough, Joseph Penzine, “Dynamics of Structures”, McGraw-Hill, Inc, International Editions 1993.
    9Robert K. Dowell, Frieder Seible, Edward L. Wilson, “Pivot Hysteresis Model for Reinforced Concrete Members”, ACI Structural Journal, September- October 1998.
    10Krawinkler H, Seneviratna GDPK, “Pros and Cons of A Pushover Analysis of Seismic Performance Evaluation”, Engineering Structures 1998; 20(4–6):452– 464.
    11International Council of Building Official, “Uniform Building Code”, UBC 1997.
    12Triantafyllos K. Makarios, “Optimum definition of equivalent Non-linear SDF System in Pushover Procedure of Multistory R/c Frames”, Engineering Structures 27 (2005) 814-825.
    13George G. Penelis, Andreas J. Kappos, “Earthquake - Resistant Concrete Structrures”, 1997.
    14T. Paulay, M.J.N. Priestley, “Seismic Design of Reinforced Concrete and Masonry Buildings”, New York: John Wiley& Sons; 1992.
    15Mónica Puglisi, Maylett Uzcategui, Julio Flórez-López, “Modeling of masonry of infilled frames, Part I: The plastic concentrator”, Engineering Structures 31 (2009) 113-118.
    16A.M. Reihorn, A. Madan, R.E. Valles, Y. Reichmann, J.B. Mander, “Modelling of Masonry Infill Panels for Structural Analysis”, Technical Report NCEER-95-0018, December 8, 1995.
    17 “Design of structures for Earthquake Resistant”, (in Viet Nam), TCXDVN 375: 2006.

    QR CODE