簡易檢索 / 詳目顯示

研究生: 錢泊菘
Po-Song Chien
論文名稱: 改良式隅撐型抗彎消能斜撐參數分析與實尺寸構件試驗研究
Parameter Analysis and Cyclic Loading Tests of Full-Scale Naturally Buckling Braces with Inner Bracing Elements
指導教授: 蕭博謙
Po-Chien Hsiao
口試委員: 陳垂欣
Chui-Hsin Chen
林克強
Ker-Chun Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 209
中文關鍵詞: 斜撐參數分析隅撐型寬厚比反覆加載試驗
外文關鍵詞: Brace, Parameter Analysis, Inner Bracing Elements, Width-to-thickness Ratio, Cyclic Loading Tests
相關次數: 點閱:185下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣地處於環太平洋地震帶上,在與地震共存的生活中,房屋結構物的安全直接影響了生命安全與生活品質,因此提升結構物耐震能力的手段極為重要,斜撐構架便是一種提升結構物耐震能力常見的減震技術。為了克服傳統挫屈斜撐在挫屈後強度快速下降和韌性較差的缺點,近年來本研究開發了一新型鋼斜撐構件設計,名為抗彎消能斜撐(Naturally Buckling Brace, NBB),於前期單軸試驗與子構架試驗中證實其有著提早降伏提供能量消散、延後挫屈提升韌性之性能,以及抗彎消能斜撐強度與勁度之雙線性計算公式;於隅撐型試驗中設計構架時發現,因高樓層設計強度較低,因而選擇大寬厚比的斷面設計,然而寬厚比的增大對於抗彎消能斜撐有著不良的影響,因而提出了隅撐型抗彎消能斜撐的設計概念來改善寬厚比問題。本研究延續隅撐型抗彎消能斜撐的想法,進而提出更有效率改善寬厚比的斷面設計方式,稱之為「改良式隅撐型抗彎消能斜撐」,同時發現前期提出的雙線性計算公式中,由於忽略了斜撐設計細節導致無法反映其實際行為能力,因此本研究先對於四項關於抗彎消能斜撐的設計細節進行參數規劃,並根據ABAQUS有限元素模型分析結果分別提出一般型與改良式隅撐型抗彎消能斜撐的三線性迴歸公式模型,以及於分析過程中發現斜撐的繫接細節對於局部挫屈提前發生的影響,因而提出有關繫接細節的界限值來避免局部挫屈提前發生;後經實尺寸構件試驗證實改良式隅撐型抗彎消能斜撐能有效降低寬厚比並增加韌性的可行性,以及根據試驗結果驗證三線性公式能預測斜撐行為的精準性,並提出抗彎消能斜撐的建議設計流程;使用OpenSees與ABAQUS有限元素模型建置試驗模擬,提供建議建立模型與設定方式,並透過ABAQUS分析觀察試驗中應力分布情形,以及整理試體破壞開裂時的等值塑性應變作為供後續抗彎消能斜撐研發之破裂指標。


    Taiwan situates in Circum-Pacific Seismic Belt. To coexist with the earthquakes, the way to improve the seismic capacity of structures are extremely important. Installing braces is a kind of common ways to improve the seismic performance of the structures. In order to improve the disadvantage of conventional buckling braces which strength decrease rapidly after buckling and have low ductile capacity. In recent years, this research has developed a new type of steel bracing members, named Naturally Buckling Brace (NBB), which has been proved in the early tests that it can yield early to provide energy dissipation, and also delay the occurrence timing of buckling. When designing the structure, it was found that the low design strength requirement in the high-rise floors, a large width-thickness ratio was selected. However, the increase of the width -thickness ratio has negative effects on the ductile of the NBBs.To solve this situation, the design concept of “NBBs with inner bracing plates” was proposed. In this study, to continues the ideas of “NBBs with inner bracing plates” and also improve its efficiency of reducing width-thickness ratio, the new design way is proposed and tested. The bilinear proposed model equations which was proposed before can’t reflect the behavior of the NBBs effectively, because of the design details of the NBBs are ignored. Thus, this study programs four parameters of the NBBs’ design details, and trilinear regression model equations, which based on the result of the ABAQUS finite element analysize, is proposed. The batten details limitations of the NBBs is also be proposed, because it could affect the local buckling occurrence. The new design of “NBBs with inner bracing plates” was proved that it can effectively reduce the width-thickness ratio and increase the ductile by the full-size member test, and the trilinear equations is verified according to the test results, then the design process of “NBBs with inner bracing plates” is proposed. Using OpenSees and ABAQUS finite element model to establish the simulation of the test and provide suggestions for model building and setting methods. Observing the stress distribution and the PEEQ of crack timing by the ABAQUS to give suggestions of NBBs’ failure index.

    摘要 i Abstract ii 誌謝 iv 目錄 v 表目錄 viii 圖目錄 ix 照片目錄 xiv 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與方法 2 1.3 論文內容與架構 2 第二章 文獻回顧 4 2.1 同心斜撐相關研究 4 2.2 斜撐構件之接合板淨間距研究 4 2.3 抗彎消能斜撐基本原理 5 2.4 前期單軸試驗研究 6 2.5 前期子構架試驗研究 6 2.6 前期隅撐型試驗研究 8 第三章 改良式隅撐型抗彎消能斜撐有限元素分析與研究 9 3.1 設計概念與有限元素分析目的 9 3.2 有限元素模型建置 10 3.2.1 有限元素模型設定 10 3.2.2 前期實驗結果驗證 11 3.3 一般型抗彎消能斜撐分析結果與討論 11 3.3.1 模型參數研究分析 11 3.3.2 迴歸挫屈時機公式模型 11 3.3.3 斜撐繫接設計探討 12 3.3.4 迴歸強度曲線公式模型 12 3.4 改良式隅撐型抗彎消能斜撐分析結果與討論 14 3.4.1 模型參數研究分析 14 3.4.2 迴歸挫屈時機公式模型 14 3.4.3 斜撐繫接設計探討 15 3.4.4 迴歸強度曲線公式模型 15 第四章 實尺寸改良式隅撐型抗彎消能斜撐試驗研究 17 4.1 試驗目的與規劃 17 4.1.1 試體設計 17 4.1.2 試驗設備與配置 18 4.1.2.1 試驗配置 18 4.1.2.2 試驗加載歷時 19 4.1.2.3 量測系統 19 4.1.3 試驗程序 20 4.1.4 材料試驗 20 4.2 試驗觀察與紀錄 21 4.2.1 試體NP30 21 4.2.2 試體P30 22 4.2.3 試體P30L 24 4.3 試驗結果與討論 25 4.3.1 試體遲滯行為與破壞模式 25 4.3.2 迴歸強度曲線公式模型驗證 26 4.3.3 試體韌性與能量消散 28 4.3.4 試體軸向與撓曲變形 29 4.4 改良式隅撐型抗彎消能斜撐設計流程 30 第五章 試驗模擬分析結果 32 5.1 有限元素分析研究目的 32 5.2 OpenSees有限元素分析 32 5.2.1 分析模型建置 32 5.2.2 分析結果 33 5.3 ABAQUS有限元素分析 33 5.3.1 分析模型建置 33 5.3.2 分析結果 35 第六章 結論與建議 37 6.1 結論 37 6.2 建議 37 參考文獻 39

    [1] Popov, E. P., Takanashi, K., and Roeder, C. W. (1976). “Structural steel bracing systems.” EERC Rep. 76–17, Univ. of California, Berkeley, CA.
    [2] Black, G. R., Wenger, B. A., and Popov, E. P. (1980). “Inelastic buckling of steel struts under cyclic load reversals.” UCB/EERC-80/40, Earthquake Engineering Research Center, Univ. of California, Berkeley, CA.
    [3] Tremblay, R., Archambault, M.-H., and Filiatrault, A. (2003). “Seismic response of concentrically braced steel frames made with rectangular hollow bracing members.” J. Struct. Eng., 10.1061/(ASCE)0733-9445 (2003)129:12(1626), 1626–1636.
    [4] Lehman, D. E., and Roeder, C. W. (2008). “Improved seismic design of concentrically braced frames and gusset plate connections.” Proc., Structures Congress 2008, ASCE, Reston, VA, 1–10.
    [5] Hsiao, P. C., Lehman, D. E., and Roeder, C. W. (2013). “A model to simulate special concentrically braced frames beyond brace fracture.” Earthquake Eng. Struct. Dyn., 42(2), 183–200.
    [6] Hsiao PC, Lehman DE, Roeder CW. “Evaluation of the Response Modification Coefficient and Collapse Potential of SCBFs.” Earthquake Eng. Struct. Dyn., 2013;42(10):1547-1564.
    [7] Hsiao PC, Liao WC. Effects of Hysteretic Properties of Stud-type Dampers on Seismic Performance of Steel Moment Resisting Frame Buildings. J. of Structural Engineering, ASCE 2019;145(7).
    [8] Watanabe, A., Hitomi, Y., Saeki, E., Wada, A., and Fujimoto, M. (1988). “Properties of brace encased in buckling-restraining concrete and steel tube.” Proc., 9th World Conf. on Earthquake Engineering, Japan As sociation for Earthquake Disaster Prevention, Tokyo, 719–724.
    [9] Black, C., Makris, N., and Aiken, I. (2002). “Component testing, stability analysis and characterization of buckling-restrained unbonded braces (TM).” Earthquake Engineering Research Center, Univ. of California, Berkeley, CA.
    [10] Tsai, K. C., et al. (2008). “Pseudo-dynamic tests of a full-scale CFT/BRBF frame. Part 1: Specimen design, experiment and analysis.” Earthquake Eng. Struct. Dyn., 37(7), 1081–1098.
    [11] Christopoulos, C., and Montgomery, M. (2013). “Viscoelastic coupling dampers (VCDs) for enhanced wind and seismic performance of highrise buildings.” Earthquake Eng. Struct. Dyn., 42(15), 2217–2233.
    [12] Astaneh-Asl, A., Goel, S. C., and Hanson, R. D. (1982). “Cyclic Behavior of Double Angle Bracing Members with End Gusset Plates,” Report No. UMEE 82R7. Ann Arbor: University of Michigan.
    [13] Astaneh-Asl, A., Cochran, M. L., and Sabelli, R. (2006). “Seismic detailing of gusset plates for special concentrically braced frames, behavior and design of gusset plates.” Structural Steel Educational Council, Moraga, CA.
    [14] Hsiao, P.C. et al. (2016). “Development and Testing of Naturally Buckling Steel Braces.” Journal of Structural Engineering, ASCE, 142(1).
    [15] Hsiao, P.C. et al. (2019). “Slenderness Effect in Naturally Buckling Braces Under Seismic Loads.” Journal of Structural Engineering, ASCE, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002612.
    [16] Hsiao, P.C. et al. (2020). “Effect of Far-Field and Near-Fault Cyclic Loadings on Seismic Performance of Naturally Buckling Braces in Pairs.” https://doi.org/10.1016/j.engstruct.2020.110668.
    [17] 李承益 (2019). “抗彎消能斜撐構架耐震性能評估與隅撐型抗彎消能斜撐試驗研究”, 國立臺灣科技大學營建系研究所碩士論文

    QR CODE