簡易檢索 / 詳目顯示

研究生: 周思廷
Szu-Ting Chou
論文名稱: 合成交聯型聚苯並咪唑應用於中溫型燃料電池的質子交換膜
Synthesis of Crosslinking Polybenzimidazole for Proton Exchange Membrane Fuel Cell at Intermediate Temperature
指導教授: 陳燿騰
Yaw-Terng Cherm
口試委員: 曾文祺
none
華沐怡
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 113
中文關鍵詞: 質子交換膜交鏈聚苯並咪唑
外文關鍵詞: Proton Exchange Membrane Fuel Cell, crosslinking, Polybenzimidazole
相關次數: 點閱:288下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功合成出側鏈分別含有兩種不同巨大基團之PBI聚合物,這些聚合物具有好的溶解度,可塗佈成具有韌性之薄膜,且有好的熱安定性,有高的開始裂解溫度(氮氣下)、高的玻璃轉換溫度(Tg 超過300 ℃以上),它的抗張強度大於69 MPa。但是當摻雜磷酸後,它們的機械強度會下降,因此本研究更近一步成功地藉由交鏈反應來加強濕膜之機械強度。本研究分別使用兩種不同之交鏈劑來進行討論,而其中PBI(BP+SO2(1:9)+0.125 MBDGA) 之抗張強度較交鏈處理前高出五倍,PBI(SX+m(1:9)+ 0.45 DCX)之抗張強度甚至較未經交鏈處理之PBI(SX+m(1:9)) 提升十倍以上。
    在質子傳導度方面,質子傳導度隨溫度與磷酸摻雜程度增加而增加,隨交鏈劑使用量增加而減少,其中PBI(SX+m(1:9)+0.1 MBDGA)在溫度160℃,飽和磷酸摻雜程度為236wt%,質子傳導度為50 mS/cm。
    因此這些側鏈含巨大基團之交鏈PBI 薄膜具有足夠的質子傳導度、熱安定性及較佳的機械強度,是很有潛力成為中溫型燃料電池中質子交換膜材料。


    Polybenzimidazoles (PBIs) containing different contents of benzothiazole or biphenyl-carbonyl pendant groups were prepared by condensation of 3,3’-Diaminobenzidine with different dicarboxylic acid containing the pendant groups. Furthermore, these PBIs have been successfully cross-linked with α,α’-dichloro-p-xylene (DCX) and 4,4'-methylenebis(N,N-diglycidylaniline) (MBDGA), each with three different dosages, to improve membranes mechanical properties after being doped with phosphoric acid.
    Their glass transition temperature exceeded 250℃. These cross-linked films exhibited great improvement of mechanical strength in doped state. The proton conductivity of PBI is dependent on phosphoric acid uptake and temperatures. The PBI (SX+m(1:9)+ 0.1MBDGA) was even higher 0.5 S/cm at 160℃. The phosphoric acid absorption and mechanical strength of the PBI membranes were both influenced by the degree of cross-linking.
    Therefore, these cross-linked polybenzimidazoles membranes could be the promising materials alternative for medium and high-temperature fuel cells applications by their better tensile strength in acid doped state and enough proton conductivity.

    摘要4 Abstract5 List of Tables6 List of Figures7 Chapter 1.10 1.1 Foreword10 1.2 Fuel Cells12 1.2.1 Introduction12 1.2.2 Fuel cell types[1, 5-10]15 1.2.3 Characteristics [6, 7]21 1.3 High temperature - PEMFC24 1.4 Proton exchange membranes27 1.4.1 Water-based proton exchange membranes28 1.4.2 Acid-based proton exchange membranes38 1.5 Proton transport mechanism42 1.5.1 Water-based system43 1.5.2 Acid-based system44 1.6 Research motivation46 Chapter 2 Experimental section47 2.1 Experimental procedure47 2.2 Experimental section48 2.2.1 Materials48 2.2.2 Synthesis of monomers50 2.2.3 Synthesis of PBIs53 2.2.4 Preparation of uncrosslinked membranes54 2.2.5 Preparation of crosslinked membranes55 2.2.6 Characterization techniques57 Chapter 3. Results and Discussion62 Part Ⅰ. BP series62 3.1 Monomers identification62 3.2 PBIs Identification63 3.2.1 Inherent Viscosity and Solubility63 3.2.2 Polybenzenimidazole identification64 3.2.3 Thermal properties64 3.3 Crosslinked BP-PBIs identification66 3.3.1 FTIR identification66 3.3.2 Thermal properties67 3.3.3 Phosphoric acid doping level and swelling ratio67 3.3.4 Mechanical properties69 3.3.5 Proton conductivity70 3.3.6 The influence of crosslinker dosage71 Part Ⅱ. SX series73 3.4 Crosslinked SX-PBIs identification73 3.4.1 Inherent Viscosity and Solubility73 3.4.2 FTIR identification73 3.4.3 Thermal properties74 3.4.4 Phosphoric acid doping level and swelling ratio75 3.4.5 Mechanical properties76 3.4.6 Proton conductivity77 3.4.7 The influence of crosslinker dosage78 Chapter 4 Conclusions80 References82

    1.Song, C., Fuel processing for low-temperature and high-temperature fuel cells Challenges, and opportunities for sustainable development in the 21st century. Catalysis Today, 2002. 77.
    2.Mediavilla, M., et al., The transition towards renewable energies: Physical limits and temporal conditions. Energy Policy, 2013. 52: p. 297-311.
    3.Sayigh, A., Worldwide progress in renewable energy. Renewable Energy, 2009.
    4.Zhonghao Rao, S.W., A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews, 2011.
    5.Barbir, F., PEM Fuel Cells : Theory and Practice. 2005: Elsevier Academic Press.
    6.EG&G Technical Services, I., Fuel Cell Handbook 7th edition. 7th ed. 2004, U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory.
    7.James Larminie, A.D., Fuel Cell Systems Explained. 2003.
    8.(FCTec), F.C.T.a.E.C. n.d.; Available from: http://www.fctec.com/index.asp.
    9.Dimitrios Papageorgopoulos , D.H., Kathi Martin, Dave Peterson. Fuel Cells Current Technology- Types of Fuel Cells. 2011 03/08/2011; Available from: http://www.usa.gov/.
    10.Chandan, A., et al., High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review. Journal of Power Sources, 2013. 231: p. 264-278.
    11.Park, C.H., et al., Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Progress in Polymer Science, 2011. 36(11): p. 1443-1498.
    12.Asensio, J.A., E.M. Sanchez, and P. Gomez-Romero, Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chemical Society Reviews, 2010. 39(8): p. 3210.
    13.Saswata Bose, T.K., Thi Xuan Hien Nguyen, Nam Hoon Kim,Kin-tak Laua,Joong Hee Lee, Polymer membranes for high temperature proton exchange membrane fuel cell. Progress in Polymer Science, 2011. 36.
    14.Dupuis, A.-C., Proton exchange membranes for fuel cells operated at medium temperatures Materials and experimental techniques. Progress in Materials Science, 2011. 56.
    15.Li, Q., et al., High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science, 2009. 34(5): p. 449-477.
    16.Wang, B., Recent development of non-platinum catalysts for oxygen reduction reaction. Journal of Power Sources, 2005. 152: p. 1-15.
    17.Oh, H.-S., et al., Development of highly active and stable non-precious oxygen reduction catalysts for PEM fuel cells using polypyrrole and a chelating agent. Electrochemistry Communications, 2011. 13(8): p. 879-881.
    18.C. Yang, P.C., S. Srinivasan, J. Benziger, A.B. Bocarsly, Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. Jouenal of POWER SOUCES, 2001. 103: p. 9.
    19.Maier, G. and J. M. H., Sulfonated Aromatic Polymers for Fuel Cell Membranes. 2008: p. 1-62.
    20.Yin, Y., et al., On the Development of Naphthalene-Based Sulfonated Polyimide Membranes for Fuel Cell Applications. Polymer Journal, 2006. 38(3): p. 197-219.
    21.Michael A. H., H.G., Yu Seung Kim, Brian R. Einsla, and James E. McGrath, Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chem. Rev., 2004. 104.
    22.Q. Li , R.H., J.O. Jensen, and N.J. Bjerrum, PBI-Based Polymer Membranes for High Temperature Fuel Cells – Preparation, Characterization and Fuel Cell Demonstration. Fuel cells, 2004. 4.
    23.Pan, H., X. Zhu, and X. Jian, Synthesis and properties of sulfonated copoly(phthalazinone ether imides) as electrolyte membranes in fuel cells. Electrochimica Acta, 2010. 55(3): p. 709-714.
    24.Lafitte, B. and P. Jannasch, Proton-Conducting Aromatic Polymers Carrying Hypersulfonated Side Chains for Fuel Cell Applications. Advanced Functional Materials, 2007. 17(15): p. 2823-2834.
    25.Moore, K.A.M.a.R.B., State of Understanding Nafion. Chemical Reviews, 2004. 104.
    26.Yoshimura, K. and K. I., Aromatic Polymer with Pendant Perfluoroalkyl Sulfonic Acid for Fuel Cell Applications. Macromolecules, 2009. 42(23): p. 9302-9306.
    27.Karlsson, L., Polysulfone ionomers for proton-conducting fuel cell membranes: sulfoalkylated polysulfones. Journal of Membrane Science, 2004. 230(1-2): p. 61-70.
    28.Yin, Y., et al., Sulfonated polyimides with flexible aliphatic side chains for polymer electrolyte fuel cells. Journal of Membrane Science, 2011. 367(1-2): p. 211-219.
    29.Zhu, J., et al., Novel side-chain-type sulfonated hydroxynaphthalene-based Poly(aryl ether ketone) with H-bonded for proton exchange membranes. Polymer, 2010. 51(14): p. 3047-3053.
    30.Pang, J., et al., Synthesis and characterization of sulfonated poly(arylene ether)s with sulfoalkyl pendant groups for proton exchange membranes. Journal of Membrane Science, 2008. 318(1-2): p. 271-279.
    31.Jianhua F., X.G., S. H., T. W., K. T., and a.K.-i.O. H.K., Novel sulfonated polyimides as polyelectrolytes for fuel cell application 1. Synthesis proton conductivity and water stability of polyimides from 4 4-diaminodiphenyl ether-2 2-disulfonic acid. Macromolecules, 2002. 35.
    32.Dae S.K., G.P.R., and Michael D. G., Comb-shaped poly(arylene ether sulfone)s as proton exchange membranes. Macromolecules, 2008. 41.
    33.He B., W.W.H., Recent developments in fuel-processing and proton-exchange membranes for fuel cells. 2010 Society of Chemical Industry, 2010.
    34.Li, N., et al., Sulfonated polyimides bearing benzimidazole groups for proton exchange membranes. Polymer, 2007. 48(25): p. 7255-7263.
    35.Naoki A., M.A., S.S., K.M., and a.M.W. Hiroyuki Uchida, Aliphatic aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications. JACS, 2006. 128.
    36.C.G., R.M., B.S., N.C., G.G., M.P., Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. polymer, 2001. 42.
    37.Hyoung J.K., M.H.L., Eun M.S., Sang Y.N., Hydrolytic stability of sulfonic acid-containing polyimides for fuel cell membranes. Macromolecular Research, 2004. 12.
    38.Kenji M., H.Z., and M.W., Proton conductive polyimide electrolytes containing fluorenyl groups Synthesis, properties, and branching effect. Macromolecules, 2004. 37.
    39.TOMOHIRO YASUDA, K.M., M.H., M.N., M.W., Synthesis and properties of polyimide ionomers containing sulfoalkoxy and fluorenyl groups. Journal of Polymer Science: Part A: Polymer Chemistry, 2005. 43.
    40.Hu, Z., et al., Synthesis and characterization of sulfonated polyimides derived from 2,2′-bis(4-sulfophenyl)-4,4′-oxydianiline as polymer electrolyte membranes for fuel cell applications. Journal of Membrane Science, 2009. 329(1-2): p. 146-152.
    41.Chen, K., et al., Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for fuel cell application. Polymer, 2009. 50(2): p. 510-518.
    42.Sutou, Y., et al., Synthesis and properties of sulfonated polyimides derived from bis(sulfophenoxy) benzidines. Journal of Polymer Science Part A: Polymer Chemistry, 2009. 47(5): p. 1463-1477.
    43.Kenji Miyatake, Y.C., and Masahiro Watanabe, Novel Sulfonated Poly(arylene ether)  A Proton Conductive Polymer Electrolyte Designed for Fuel Cells. Macromolecules, 2003. 36: p. v.
    44.Dae S.K., G.P.R., and Michael D.G., Comb-Shaped Poly(arylene ether sulfone)s as Proton Exchange Membranes. Macromolecules, 2008. 41: p. 2126 - 2134.
    45.Li, N., et al., Polymer Electrolyte Membranes Derived from New Sulfone Monomers with Pendent Sulfonic Acid Groups†. Macromolecules, 2010. 43(23): p. 9810-9820.
    46.Sinan F., K.S., Y.W., Jinhui Pang, Zhenhua Jiang, Concentrated sulfonated poly (ether sulfone)s as proton exchange membranes. Journal of Power Sources, 2013. 224: p. 42-49.
    47.Sumner, M.J., et al., Novel proton conducting sulfonated poly(arylene ether) copolymers containing aromatic nitriles. Journal of Membrane Science, 2004. 239(2): p. 199-211.
    48.Gao, Y., et al., Low-swelling proton-conducting copoly(aryl ether nitrile)s containing naphthalene structure with sulfonic acid groups meta to the ether linkage. Polymer, 2006. 47(3): p. 808-816.
    49.Yan G., G.P.R., M.D. Guiver,Serguei D. Mikhailenko, and a.S.K. Xiang Li, Synthesis of copoly(aryl ether ether nitrile)s containing sulfonic acid groups for PEM application. Macromolecules, 2005. 38.
    50.Jutemar, E.P. and P.J., Copoly(arylene ether nitrile) and copoly(arylene ether sulfone) ionomers with pendant sulfobenzoyl groups for proton conducting fuel cell membranes. Journal of Polymer Science Part A: Polymer Chemistry, 2011. 49(3): p. 734-745.
    51.C. A. LINKOUS, H.R.A., R. W. KOPITZKE and G. L. NELSON, Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures. Journal of Hydrogen Energy, 1998. 23: p. 525-529.
    52.Deborah J. Jones, J.R., Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications. journal of Membrane Science, 2001. 185: p. 41-58.
    53.Asensio, J.A., S. Borros, and P. Gmez-Romero, Proton-conducting polymers based on benzimidazoles and sulfonated benzimidazoles. Journal of Polymer Science Part A: Polymer Chemistry, 2002. 40(21): p. 3703-3710.
    54.Mader, J.A. and B.C. Benicewicz, Sulfonated Polybenzimidazoles for High Temperature PEM Fuel Cells. Macromolecules, 2010. 43(16): p. 6706-6715.
    55.He, R., et al., Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells. Journal of Membrane Science, 2006. 277(1-2): p. 38-45.
    56.Potrekar, R.A., et al., Polybenzimidazoles tethered withN-phenyl 1,2,4-triazole units as polymer electrolytes for fuel cells. Journal of Polymer Science Part A: Polymer Chemistry, 2009. 47(9): p. 2289-2303.
    57.Kim, T.-H., T.-W. Lim, and J.-C. Lee, High-temperature fuel cell membranes based on mechanically stable para-ordered polybenzimidazole prepared by direct casting. Journal of Power Sources, 2007. 172(1): p. 172-179.
    58.SIGNORELLI, S.M.A.a.A.J., Electrical resistivity and ESCA studies on neutral poly(alkylbenzimidazoles), their salts, and complexes. Journal of Applied Polymer Science, 1979. 23.
    59.Dilek E., Y.D., N.B., I.E., Phosphoric acid doped polybenzimidazole membrane for high temperature PEM fuel cell. Journal of Applied Polymer Science, 2012.
    60.Chuang, S.-W. and S.L.-C. Hsu, Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications. Journal of Polymer Science Part A: Polymer Chemistry, 2006. 44(15): p. 4508-4513.
    61.Kulkarni, M., et al., Nitrophenoxy groups containing polybenzimidazoles as polymer electrolytes for fuel cells: Synthesis and characterization. Journal of Applied Polymer Science, 2010: p. 3282-3292.
    62.Kumbharkar, S.C., et al., Variation in acid moiety of polybenzimidazoles: Investigation of physico-chemical properties towards their applicability as proton exchange and gas separation membrane materials. Polymer, 2009. 50(6): p. 1403-1413.
    63.Kim, S.-K., et al., Polybenzimidazole containing benzimidazole side groups for high-temperature fuel cell applications. Polymer, 2009. 50(15): p. 3495-3502.
    64.Kim, S.-K., et al., Cross-Linked Benzoxazine–Benzimidazole Copolymer Electrolyte Membranes for Fuel Cells at Elevated Temperature. Macromolecules, 2012. 45(3): p. 1438-1446.
    65.Quartarone, E. and P. Mustarelli, Polymer fuel cells based on polybenzimidazole/H3PO4. Energy & Environmental Science, 2012. 5(4): p. 6436.
    66.Xu, N., et al., Synthesis of novel polybenzimidazoles with pendant amino groups and the formation of their crosslinked membranes for medium temperature fuel cell applications. Journal of Polymer Science Part A: Polymer Chemistry, 2009. 47(24): p. 6992-7002.
    67.Vien, L.M., Cerium pyrophosphates for pronton exchange membrane fuel cell at intermediate temperature, 2011: National Taiwan University of Science and Technology.
    68.Hogarth, W.H.J., J.C. Diniz da Costa, and G.Q. Lu, Solid acid membranes for high temperature proton exchange membrane fuel cells. Journal of Power Sources, 2005. 142(1-2): p. 223-237.
    69.Kreuer, K.D., On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. Journal of Membrane Science, 2001. 185.
    70.M. Eikerling , A.A.K., Proton transfer in a single pore of a polymer eletrolyte membrane. Journal of Electroanalytical Chemistry, 2001. 502.
    71.Paddison, S.J. and R. Paul, The nature of proton transport in fully hydrated NafionR. Physical Chemistry Chemical Physics, 2002. 4(7): p. 1158-1163.
    72.Ana S., J.S., and S.H., Effect of water on the low temperature conductivity of polymer electrolytes. J. Phys. Chem. B, 2006. 110.
    73.Ma, Y.L., et al., Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society, 2004. 151(1): p. A8.
    74.詹惠婷, 開發燃料電池之質子傳導膜及其性質研究, Department of Chemical Engineering. National Taiwan University of Science and Technology,2011.
    75.Yu, S. and B.C. Benicewicz, Synthesis and Properties of Functionalized Polybenzimidazoles for High-Temperature PEMFCs. Macromolecules, 2009. 42(22): p. 8640-8648.
    76.Arindam S., D.A., R. Murali Sankar, and Tushar Jana, Aggregation Behavior of Polybenzimidazole in Aprotic Polar Solvent. Macromolecules 2007. 40: p. 2844 - 2851.
    77.Hsiu-Li Lin, Y.-C.C., T. Leon Yu, Shaiu-Wu Lai, Poly(benzimidazole)-epoxide crosslink membranes for high temperature proton exchange membrane fuel cells. International Jounal Of Hydrogen Energy, 2012. 37.
    78.Lin, H.-L., et al., Preparation of PBI/PTFE composite membranes from PBI in N,N′-dimethyl acetamide solutions with various concentrations of LiCl. Journal of Power Sources, 2008. 181(2): p. 228-236.

    無法下載圖示 全文公開日期 2018/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE