簡易檢索 / 詳目顯示

研究生: 姚蘊庭
Yun-Ting Yao
論文名稱: 新型聚苯并咪唑之特性及在高溫型質子交換膜燃料電池之應用
Properties of Polybenzimidazoles for High Temperature Proton Exchange Membrane Fuel Cell Applications
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 陳秉彥
游進陽
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 115
中文關鍵詞: 聚苯并咪唑質子交換膜燃料電池質子傳導率
外文關鍵詞: polybenzimidazole, proton exchange membrane fuel cell, proton conductivity
相關次數: 點閱:270下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由四種已由本實驗室標定的新型四胺單體4,4',5,5'-tetraamino-2,2'-dimethylbiphenyl (5)、4,4',5,5'-tetraamino-2,2'-bis(trifluoromethoxy)biphenyl (10)、4,4',5,5'- tetraamino-2,2'- bis(trifluoromethyl)biphenyl(14)及4,4'-oxy-bis[3-(trifluoromethyl)-1,6-benzendiamine](21)以Eaton’s reagent為溶劑,分別與4,4'-oxybis(benzoic acid)進行縮合聚合反應,聚合出側基含有甲基的P1、側基含─OCF3基團之P2及側基含三氟甲基之聚苯并咪唑P3及P4。P1、P2、P3及P4之固有黏度分別為3.2、2.9、1.6及1.0 dL/g,皆能全溶於室溫強酸中,因此能使用MSA作為溶劑,製備成具有韌性的PBI薄膜。在氮氣條件下,P1、P2、P3及P4之5 % (Td5 %)熱重損失之熱裂解溫度分別為413、516、396 ℃及390 ℃;而10 % (Td10 %)熱重損失之熱裂解溫度467、546、449及489 ℃,在800 ℃下的殘餘重量則分別為76、58、67及64 %,皆展現出好的耐熱安定性。氧化安定性是藉由將P1、P2、P3及P4薄膜浸泡於68 ℃ Fenton溶劑中隨時間定點量測殘餘量。在浸泡216小時後,P1、P2、P3及P4殘餘量分別為89.5 %、93.7 %、63.0 %及51.2 %。P1、P2、P3及P4薄膜在室溫下浸泡於不同濃度的磷酸溶液(P1、P2為85、80、75 %,P3為75、70、65 %,P4為65、60、55 %),其磷酸摻雜量P1分別為204、160、143%,P2分別為142、101、92%,P3分別為393、168、146%,P4則分別為328、148、128 %。在飽和磷酸摻雜下,P1、P2、P3及P4薄膜其拉伸應力分別為24.4、17.0、10.2及11.6 MPa。P1、P2、P3及P4薄膜在未摻雜磷酸,透過SEM觀察其薄膜表面及橫截面,皆顯示出緻密無孔洞。最後將摻雜磷酸P1、P2、P3及P4薄膜在160 ℃下進行質子傳導度測試。P1在摻雜204 %的磷酸下具有4.72× 10-2 S/cm的質子傳導度;P2在摻雜142 %的磷酸下具有1.17× 10-2 S/cm的質子傳導度;P3在摻雜228 %的磷酸下具有4.11× 10-2 S/cm的質子傳導度;P4在摻雜295 %的磷酸下具有11.5 × 10-2 S/cm的質子傳導度,相較於商用m-PBI的傳導度4.31 × 10-2 S/cm高上許多,證實P1、P2、P3及P4薄膜聚苯并咪唑能被應用於質子交換膜燃料電池當中。


    Novel PBI, P1, P2, P3 and P4 were prepared from 4,4'-oxybis(benzoic acid) (OBA) and 4,4',5,5'-tetraamino-2,2'-dimethylbiphenyl (5), 4,4',5,5'-tetraamino-2,2'-bis(trifluoromethoxy)biphenyl (10), 4,4',5,5'- tetraamino-2,2'- bis(trifluoromethyl)biphenyl(14), and 4,4'-oxy-bis[3-(trifluoromethyl)-1,6-benzendiamine](21) by using Eaton’s reagent as solvent, respectively. The structures of P1, P2, P3 and P4 were characterized by FT-IR and 1H-NMR. The inherent viscosity of P1, P2, P3 and P4, measured in methanesulfonic acid at 35 ℃ and 0.2 g/dL, were 3.2, 2.9, 1.6 and 1.0 dL/g, respectively. P1, P2, P3 and P4 could be prepared as transparent, flexible, and tough membrane by solution casting. The decomposition temperature at 5 % weight loss (T d5 %) of P1, P2, P3 and P4 were 413, 516, 396 ℃ and 390 ℃, respectively, and the residual weight of P1, P2, P3 and P4 at 800 ℃ were 76, 58, 67 and 64 %, exhibiting outstanding thermal stability. The oxidative stability of P1, P2, P3 and P4 membranes were evaluated by Fenton test. The residual weight of P1, P2, P3 and P4 were 89.5 %, 93.7 %, 63.0 % and 51.2 % after 216 hours of Fenton test. When P1, P2, P3 and P4 membrane were immersed in different concentrations of phosphoric acid at room temperature, we could obtain P1, P2, P3 and P4 membrane with the maximum phosphoric acid uptake (PU, %) about 204, 142, 393, and 328 %, respectively. The proton conductivity of P1, P2, P3 and P4 were 4.72× 10-2, 1.17× 10-2, 4.11× 10-2, and 11.5 × 10-2 S/cm at 160 ℃ when PU were 204, 142, 228 and 295 %, respectively. It shows that P1, P2, P3 and P4 are promising proton exchange membranes for HT-PEMFC applications.

    中文摘要 II Abstract IV 第一章 緒論 1 1.1前言 1 1.2 氫能1 2 1.3 燃料電池歷程與發展1 3 1.4燃料電池分類1 4 1.5 PEMFC簡介 8 1.5.1 PEMFC發電原理3 8 1.5.2 PEMFC結構2 9 1.5.3 PEMFC介紹 11 1.5.4 HT-PEMFC介紹4, 5 13 第二章 PBI文獻回顧 15 2.1 PBI的簡介 15 2.2 PBI之聚合方法 16 2.3 PBI薄膜之製備 18 2.4 磷酸摻雜PBI 19 2.5 PBI的氧化安定性 22 2.6 含四胺新型PBI 25 2.7 含醚聯苯PBI 27 2.8 含氟PBI 29 2.9 研究動機 32 第三章 實驗 33 3.1 實驗儀器 33 3.2 實驗藥品 34 3.3 單體合成 36 3.4 新型PBI之聚合26, 27 45 3.5 PBI薄膜之製備方法 47 第四章 結果與討論 48 4.1單體合成與表徵 48 4.2 PBI之合成 71 4.3 PBI之氫核磁共振圖譜及紅外線光譜 73 4.4 PBI之分子量與溶解度 76 4.5 PBI之熱學性質 78 4.6 PBI之氧化安定性與吸水率 81 4.7 PBI之磷酸摻雜能力 84 4.8 PBI之機械強度及尺寸安定性 86 4.9 PBI薄膜表面型態 88 4.10 質子傳導度測試 93 第五章 結論 98 參考文獻 99

    1. 黃鎮江, 燃料電池. 全華圖書: 台灣, 2017.
    2. Kraytsberg, A.; Ein-Eli, Y. Review of advanced materials for proton exchange membrane fuel cells. Energ. Fuel. 2014, 28, pp 7303-7330.
    3. Daniel, G.; Yolanda, L.; Cristina R. Polymer electrolyte membrane fuel cells (PEMFC) in automotive applications: environmental relevance of the manufacturing stage. S.G.R.E. 2011, 2011, pp 68-74
    4. Araya, S. S.; Zhou, F.; Liso, V.; Sahlin, S. L.; Vang, J. R.; Thomas, S.; Gao, X.; Jeppesen, C.; Kær, S. K. A comprehensive review of PBI-based high temperature PEM fuel cells. Int. J. Hydrogen Energ. 2016, 41, pp 21310-21344.
    5. Rosli, R.E.; Sulong, A. B.; Daud, W. R. W.; Zulkifley, M. A.; Husaini, T.; Rosli, M. I.; Majlan, E.; Haque, M.A. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int. J. Hydrogen Energ. 2017, 42, pp 9293-9314.
    6. Peinemann, K.-V.; Nunes, S.P., Membranes for Energy Conversion, Wiley-VCH:Germany, 2007.
    7. Eaton, P. E.; Carlson, G. R.; Lee, J. T. Phosphorus pentoxide-methanesulfonic acid. convenient alternative to polyphosphoric acid. J. Org. 1973, 38, pp 4071-4073.
    8. Wong, C. Y.; Wong, W. Y.; Ramya, K.; Khalid, M.; Loh, K. S.; Daud, W. R. W.; Lim, K. L.; Walvekar, R.; Kadhum, A. A. H. Additives in proton exchange membranes for low- and high-temperature fuel cell applications: A review. Int. J. Hydrogen Energ. 2019, 44, pp 6116-6135.
    9. Xiao, L.; Zhang, H.; Scanlon, E.; Ramanathan, L.; Choe, E.-W.; Rogers, D.; Apple, T.; Benicewicz, B. C. High-temperature polybenzimidazole fuel cell membranes via a sol− gel process. Chem. Mater. 2005, 17, pp 5328-5333.
    10. Chandan, A.; Hattenberger, M.; El-kharouf, A.; Du, S.; Dhir, A.; Self, V.; Pollet, B. G.; Ingram, A.; Bujalski, W., High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review. J. Power Sources 2013, 231, pp 264-278.
    11. Ludueña, G. A.; Kühne, T. D.; Sebastiani, D. Mixed grotthuss and vehicle transport Mechanism in proton conducting polymers from Ab initio molecular dynamics simulations. Chem. Mater. 2011, 23, pp 1424-1429.
    12. Ma, Y.-L.; Wainright, J. S.; Litt, M. H.; Savinell, R. F. Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. J. Electrochem. Soc. 2004, 151, pp A8-A16.
    13. Teranishi, K.; Kawata, K.; Tsushima, S.; Hirai, S. Degradation mechanism of PEMFC under open circuit operation. Electrochem. Solid ST. 2006, 9, pp A475-A477.
    14. Chang, Z.; Pu, H.; Wan, D.; Liu, L.; Yuan, J.; Yang, Z. Chemical oxidative degradation of polybenzimidazole in simulated environment of fuel cells. Polym. Degrad. Stabil. 2009, 94, pp 1206-1212.
    15. Han, M.; Zhang, G.; Liu, Z.; Wang, S.; Li, M.; Zhu, J.; Li, H.; Zhang, Y.; Lew, C. M.; Na, H. Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells. J. Mater. Chem. 2011, 21, pp 2187-2193.
    16. Maity, S.; Jana, T., Soluble polybenzimidazoles for PEM: synthesized from efficient, inexpensive, readily accessible alternative tetraamine monomer. Macromolecules 2013, 46, pp 6814-6823.
    17. Muthuraja, P.; Prakash, S.; Susaimanickam, A.; Manisankar, P., Potential membranes derived from poly (aryl hexafluoro sulfone benzimidazole) and poly (aryl hexafluoro ethoxy benzimidazole) for high-temperature PEM fuel cells. Int. J. Hydrogen Energ. 2018, 43, pp 21732-21741.
    18. Chen, J.-C.; Chen, P.-Y.; Liu, Y.-C.; Chen, K.-H. Polybenzimidazoles containing bulky substituents and ether linkages for high-temperature proton exchange membrane fuel cell applications. J. Membrane Sci. 2016, 513, pp 270-279.
    19. Foster, R. T.; Marvel, C. S. Polybenzimidazoles. IV. Polybenzimidazoles containing aryl ether linkages. J. Polym. Sci. A Polym. Chem. 1965, 3, pp 417-421.
    20. Li, Q.; Jensen, J. O.; Savinell, R. F.; Bjerrum, N. J., High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci. 2009, 34, pp 449-477.
    21. Kim, T.-H.; Kim, S.-K.; Lim, T.-W.; Lee, J.-C. Synthesis and properties of poly(aryl ether benzimidazole) copolymers for high-temperature fuel cell membranes. J. Membrane Sci. 2008, 323, pp 362-370.
    22. Li, X.; Qian, G.; Chen, X.; Benicewicz, B. C. Synthesis and characterization of a new fluorine-containing polybenzimidazole (PBI) for proton-conducting membranes in fuel cells. Fuel Cells 2013, 13, pp 832-842.
    23. Pu, H.; Wang, L.; Pan, H.; Wan, D. Synthesis and characterization of fluorine-containing polybenzimidazole for proton conducting membranes in fuel cells. J. Polym. Sci. A Polym. Chem. 2010, 48, pp 2115-2122.
    24. Kumbharkar, S. C.; Karadkar, P. B.; Kharul, U. K. Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture. J. Membrane Sci. 2006, 286, pp 161-169.
    25. Qian, G.; Smith, D. W.; Benicewicz, B. C. Synthesis and characterization of high molecular weight perfluorocyclobutyl-containing polybenzimidazoles (PFCB–PBI) for high temperature polymer electrolyte membrane fuel cells. Polymer 2009, 50, pp 3911-3916.
    26. 林凡傑. 新型四胺單體與聚苯并咪唑之合成及在高溫型質子交換膜燃料電池之應用. 碩士論文. 國立臺灣科技大學, 台北市, 2016.
    27. 洪曉薇. 含氟側基之聚苯并咪唑之合成與特性及在高溫型質子交換膜燃料電池之應用. 碩士論文. 國立臺灣科技大學, 台北市, 2018.
    28. Buchanan, R. A.; Ostrozynski, R. L.;etc. Fluorinated N, N-bis-imides. U.S. Patent 5,122,613A, June 16, 1992
    29. Navarrete-Vázquez, G.; Rojano-Vilchis, M. d. M.; Yépez-Mulia, L.; Meléndez, V.; Gerena, L.; Hernández-Campos, A.; Castillo, R.; Hernández-Luis, F. Synthesis and antiprotozoal activity of some 2-(trifluoromethyl)-1H-benzimidazole bioisosteres. Eur. J. Med. Chem. 2006, 41, pp 135-141.
    30. Ueda, M.; Sato, M.; Mochizuki, A. Poly (benzimidazole) synthesis by direct reaction of diacids and diamines. Macromolecules 1985, 18, pp 2723-2726.
    31. Qian, G.; Benicewicz, B. C. Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells. J. Polym. Sci. A Polym. Chem. 2009, 47, pp 4064-4073.
    32. Chen, J.-C.; Chen, P.-Y.; Lee, S.-W.; Liou, G.-L.; Chen, C.-J.; Lan, Y.-H.; Chen, K.-H. Synthesis of soluble polybenzimidazoles for high-temperature proton exchange membrane fuel cell (PEMFC) applications. React. Funct. Polym. 2016, 108, pp 122-129.
    33. Chern, Y.-T.; Hsieh, M.-H. Synthesis and Characterization of Blend Polyimides Containing Pendant Benzimidazole and Polybenzimidazole for Proton Exchange Membrane. Master Dissertation, National Taiwan University of Science and Technology, Taipei City, 2019.

    無法下載圖示 全文公開日期 2025/08/25 (校內網路)
    全文公開日期 2030/08/25 (校外網路)
    全文公開日期 2030/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE