簡易檢索 / 詳目顯示

研究生: 楊佳穎
Chia-Ying Yang
論文名稱: 焦磷酸鈰做為質子動力燃料電池電解質之研究
The study on cerium pyrophosphate as the electrolyte of proton power fuel cell
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 郭東昊
Dong-Hau Kuo
呂宗昕
Chung-Hsin Lu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 118
中文關鍵詞: 焦磷酸鈰質子導電率Rietveld方法
外文關鍵詞: Cerium pyrophosphate, Proton conductivity, Rietveld method
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討焦磷酸鈰(CeP2O7)在不同溫濕度下之質子導電性,希望能應用於操作溫度200℃~400℃燃料電池之電解質。近年來由於報導相關磷酸鹽(CsH2PO4、Sn0.9In0.1P2O7)在此溫度範圍下有較佳的質子導電率,使得磷酸鹽的固態電解質應用可能性急遽增加,尋找具有充份質子導電率且耐熱的電解質為此溫度範圍燃料電池的關鍵性議題。
    本實驗使用CeO2與85%H3PO4 藉由低溫合成法合成CeP2O7粉末,製作未燒結後(300℃、450℃)、燒結後(300℃∼900℃)試片,測量質子導電率與操作溫度之關係。
    結構分析方面,取單一相煅燒300℃之CeP2O7,其高解析的X-ray繞射圖,經由 Rietveld 方法進行精算,得到CeP2O7結構參數,精算結果顯示,CeP2O7結構為類立方體(Quasi-cubic),空間群為P 1,晶格常數為a=8.5584 Å,b=8.5597 Å,c=8.5767 Å,α=90.17°,β=90.03°,γ=89.85°,晶體密度為3.304 g/cm3。
    高濕度氣氛下(PH2O=0.114 atm),燒結300℃之焦磷酸鈰,操作溫度在200℃時,最高質子導電率為1.87×10-2 S cm-1 ; 燒結450℃的焦磷酸鈰,操作溫度在180℃時,最高質子導電率為3.0×10-2S cm-1 ; 燒結溫度高於600℃之後,質子導電率均低於1×10-2 S cm-1。焦磷酸鈰摻雜10%鎂(Ce0.9Mg0.1P2O7),燒結450℃,操作溫度在200℃時,質子導電率高達4.0×10-2 S cm-1,且在更高溫度範圍下(200℃~260℃),質子導電率均超過0.1 S cm-1 。


    This study investigates the dependence of proton conductivity on temperature, humidity, sintering temperature, and dopant content of the cerium pyrophosphate, and the feasibility of cerium pyrophosphate as the electrolyte for the fuel cell operated in 200 – 400 C. Recently, the literature reports on the proton conductors of phosphates, such as CsH2PO4 and Sn0.9In0.1P2O7, have demonstrated their proton conductivities reaching the electrolyte application level in this temperature range. Hence the probability of building a proton power fuel cell with a phosphate electrolyte has escalated. On building a fuel cell operated in this crucial temperature range, it is critical to find an enduring electrolyte with sufficient proton conducting capability.
    We synthesized the CeP2O7 powder using the powder of CeO2 an 85% phosphoric acid (H3PO4), and found the maximum synthesis temperature was an important factor for the proton conductivity. Our specimens include the unsintered, pressed pellets which were calcined at 300 and 450 C, and the sintered pellets which were sintered at 300 – 900 C. On the structure characterization, the powder diffraction patterns resulted from low temperature synthesized powder were used to refine the CeP2O7 crystal structure with Rietveld refinement method using the GSAS software. Starting with a cubic cell of space group P a , the refinement results indicate that a triclinic (pseudo-cubic) cell with space group P1 is a better model, and the refined lattice parameters, a=8.5584 , b=8.5597, c=8.5767.
    The pyrophosphate of (Ce0.9Mg0.1)P2O7 calcined at 300 C and sintered 450 C has been identified as the specimen most suitable for the electrolyte application of 200 – 400 C proton power fuel cells. The proton conductivity of (Ce0.9Mg0.1)P2O7 has been demonstrated over 0.01 S cm-1 in the temperature range of 200 - 260 C under the atmosphere of water vapor pressure 0.114 atm. Its maximum conductivity is 4.0  10-2 S cm-1 at 200 C, further increasing temperature decreases the conductivity. The undoped CeP2O7, calcined at 300 C and sintered 450 C, also exhibits high proton conductivity, but in a lower temperature range. The conductivity of CeP2O7 at PH20=0.114 atm exceeds 0.01 S cm-1 at 120-180 C, with its maximum 2.98  10-2 S cm-1 at 180 C.

    中文摘要……………………………………………………………….I 英文摘要…………………………………………………………...III 目錄……………………………………………………….....…. V 圖目錄………………………………………………………………IX 表目錄………………………………………………………….…. XIII 第一章 緒論…………………………………………………………...1  1.1 前言……………………………………………………….....1  1.2 研究動機………………………………………………………..2 第二章 文獻回顧與理論基礎……………………………….…….4  2.1燃料電池簡介………………………………………………..….4    2.1.1 燃料電池的種類………………………………………….4    2.1.2 近年來質子傳導燃料電池發展趨勢………………….. 5  2.2操作溫度為200℃~400℃之燃料電池簡介…………………….6  2.3 質子傳導機制…………………………………………………..8 2.4 質子導體種類與特性………………………………………….13 2.4.1 含水化合物 (Water-containing compounds) ……….13 2.4.2 氧化物酸與固態氧化物酸鹽(Oxo-acids and their salts)16 2.4.3 高溫質子傳導氧化物(High Temperature Proton Conducting oxides) ………………………………………………24 2.4.4 有機無機複合物 (Organic/Inorganic composites) ……26  2.5 焦磷酸鈰之合成與結構特性………………………………….27 2.5.1 焦磷酸鈰之合成方法……………………………………27 2.5.2 AIVMV2O7 之結構………………………………………28 2.6電解質特性分析. …………………………………………… …30 2.6.1 晶體結構分析……………………………………………30 2.6.1.1 The Rietveld Method 介紹…………………………30 2.6.1.2 The Rietveld Method 原理…………………………30 2.6.1.3 GSAS 分析…………………………………………32 2.6.2 電化學交流阻抗分析基本原理………………………35 2.6.2.1電化學交流阻抗圖譜簡介…………………………35 2.6.2.2交流阻抗分析之等效電路…………………………38 2.6.2.3等效電路系統模擬…………………………………43 第三章 實驗方法及步驟……………………………………….…46  3.1實驗藥品耗材與儀器設備…………………………………...46 3.1.1實驗藥品與消耗性材料………………………………46 3.1.2儀器設備………………………………………………46  3.2實驗流程…………………………………………………...…48  3.3焦磷酸鈰(CeP2O7)製備……………………………….…...49 3.3.1 粉末前處理……………………………………….…...49 3.3.2 酸化反應(Acid digestion) ………………….…...49 3.3.3煆燒(Calcination) ……………………………………49 3.3.4 塊材燒結(Sintering) …………………………….…50 3.3.5未燒結(Unsintered)塊材….……………………………52  3.4材料與電化學特性分析試片製作…. …………………………52 3.4.1 XRD繞射分析之試片….…………………………………52 3.4.2場發掃描式電子顯微鏡微結構觀察分析之試片…….…52 3.4.3導電率量測之試片….……………………………………53 3.5材料特性分析……………………………………………………54 3.5.1燒結體密度量測(阿基米德原理) …………………….…54 3.5.2相鑑定(X光粉末繞射)…………………………….…54 3.5.3晶體結構分析…. …………………………………………55 3.6質子導電率量測-交流阻抗分析(AC Impedance) ……………56 第四章 結果與討論..…………………………………….......…59  4.1材料特性分析………………………………………………...59 4.1.1 煅燒後粉末之 XRD 相鑑定…………………………...59 4.1.2 晶體結構分析- Rietveld Method…. ……………………..61 4.1.3燒結體之 XRD 相鑑定.. ……………………………….68 4.1.4 材料孔隙度估算………………………………………72 4.1.5 電解質之微結構………………………………………72 4.2燒結體之電性分析……………………………………………73 4.2.1 交流阻抗圖譜分析..………………………………………73 4.2.2 質子導電率………………………………………………81 4.3 未燒結壓錠體之電性分析……………………………………86 4.3.1 交流阻抗圖譜分析………………………………………86 4.3.2 質子導電率………………………………………………94 第五章 結論……………………………………………………...…98 參考文獻…………………………………………………………..…100

    1.S.M. Haile, D.A. Boysen, C.R.I. Chisholm, and R.B. Merle, Nature, 410, pp.910-913 (2001).
    2.Q. Li, R. He, J.O. Jensen, and N.J. Bjerrum, Chem. Mater.,15, pp.4896 (2003).
    3.C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, and A. B. Bocarsly, J. Power Sources, 103, pp.1(2001).
    4.Q. Li, R. He, J. Gao, J.O. Jensen, and N.J. Bjerrum, J. Electrochem. Soc., 150, pp.A1599 (2003).
    5.M. M. Mench, H. M. Chance, and C. Y. Wang, J. Electrochem. Soc., 151, A144 (2004).
    6.B. Wang, J. Power Sources, 152, pp.1 (2005).
    7.J.B. Goodenough, Solid State Microbatteries, Plexnum Press, New York, pp.195-212 (1990).
    8.Philippe Colomban, “Proton Conductors: Solids, Membranes, and Gels-Materials and Devices”, Chemistry of Solid State Materials Cambridge University Press, Great Britain (1992).
    9.K.D. Kreuer, Chemistry of Materials, 8, pp.610–641 (1996).
    10.T.Norbty, Nature , 410, pp.877-878 (2001).
    11.P.Heo , “Intermediate-Temperature Fuel Cells Using a Proton- Conducting Sn0.9In0.1P2O7 Electrolyte” , Ph.D dissertation, Nagoya University, Japan (2008).
    12.J.W. Phair , and S.P.S. Badwal, Ionics, 12, pp.103-115 (2006).
    13.M. Watanabe, H. Uchida, Y. Seki, and M. Emori, J. Electrochem. Soc, 143, pp.3827 (1996).
    14.V. Linkov, Membr Technol, pp.4-8(2001).
    15.N. Miura, and N. Yamazoe, Solid State Ion, 53, pp.975-982(1992).
    16.Y.M. Li, M. Hibino, M. Miyayama, and T. Kudo, Electrochemistry, 69, pp.2-5(2001).
    17.L. Glasser, Chem. Rev., 75, pp.21(1975).
    18.J. Bruinink, J. Appl. Electrochem., 2, pp.33 (1972).
    19.A.I. Baranov, L.A. Shuvalov, and N.M. Shchagina, JETP Lett. Engl. Transl., 36, pp.459-462 (1982).
    20.B. Zhu, Z.H. Lai, and B.E. Mellander, Solid State Ion, 70-71, pp.285-290 (1994).
    21.D.A. Boysen, T. Uda, C.R.I. Chisholm, and S.M. Haile, Science, 303, pp.68-70 (2004).
    22.S. M. Haile, C.R. I. Chisholm, K. Sasaki, D.A. Boysenw and T. Udaz, Faraday Discussions, (2006).
    23.T. Matsui , N. Kazusa, Y. Kato, Y. Iriyama,T. Abe, K. Kikuchi, and Z. Ogumi, Journal of Power Sources, 171 , pp.483-48 (2007).
    24.C. Suna, U. Stimminga, Electrochimica Acta, 53, pp.6417-6422 (2008).
    25.H. Muroyama, K. Kudo, T. Matsui, R. Kikuchi, and K. Eguchi, Solid State Ionics, 178, pp.1512-1516 (2007).
    26.T. Uma, H.Y. Tu, S. Warth, D. Schneider, D. Freude, and U. Stimming, J. Mater Sci., 40, pp.2059-2063 (2005).
    27.M. Nagao, T. Kamiya, P. Heo, A. Tomita, T. Hibino, and M. Sano, J. Electrochem. Soc., 153, pp. A1604 (2006).
    28.P. Heo, H. Shibata, M. Nagao, T. Hibino, M. Sano, J. Electrochem. Soc., 153, pp. A897 (2006).
    29.H. Iwahara, Solid State Ion., 125, pp.271-278 (1999).
    30.H. Iwahara, Solid State Ion., 86-88, pp.9-15 (1996).
    31.Q.F.Li, R.H. He, J.O. Jensen, and N.J. Bjerrum, Chem. Mater, 15, pp. 4896-4915(2003).
    32.W. K. Gerrard, D. Kilburn, Journal of the Chemical Society, pp. 1536-1539 (1956).
    33.A.P. Wilkinson, C. Lind, Chem. Mater, 11, pp.101-108 (1999).
    34.M.L. Di Vona, E. Traversa, S. Licoccia, Chemistry of Materials, 13, pp.1144 (2001).
    35.R.U. Barz, M. Grassl, P. Gille, Cryst. Res. Technol, 34, pp.1127 (1999).
    36.R. J. P. Corriu, D. Leclercq, P. Lefevre, P.H. Mutin, and A. Vioux, J. Mater. Chem, 2, pp.673-674 (1992).
    37.S.M. Al-Zahrani, N.O. Elbashir, A.E. Abasaeed, Catalysis Letters, 69, pp. 65(2000).
    38.B.Y. Jibril, S.M. Al-Zahrani, A.E. Abasaeed, Catalysis Letters, 74, pp. 3-4(2001).
    39.I.C. Marcu, I. Sandulescu, J.M. Millet, Applied Catalysis, 227, pp. 309 (2002).
    40.K.M White, “Low Temperature Synthesis And Characterization Of Some Low Positive And Negative Thermal Expansion Materials” , Ph.D dissertation, Georgia Institute of Technology (2006).
    41.H. Völlenkle, A. Wittmann, H. Nowotny, Monatshefte fur Chemie , 94, pp. 956-963(1963).
    42.G. Alberti, U. Costantino, L. Zsinka, Inorg. nucl. Chem., 34, pp.3549-3560 (1972).
    43.V. Krasnikov, M. Vaivada, Z. Konstants, J. Solid State Chem., 74, pp.l-8 (1988).
    44.T. Mitsutomo, I. Sayuri, M. Tsuneo, M. Itaru, K. Masamitsu, Bull. Chem. Soc. Jpn. , 52 (4), pp. 1034-1040(1979).
    45.K.M. White, P.L. Lee, P.J. Chupas, K.W. Chapman, E.A. Payzant, A.C. Jupe, W.A. Bassett, C.S. Zha, and A.P. Wilkinson, Chem. Mater. , 20, pp. 3728–3734(2008).
    46.H.M. Rietveld, Acta. Crystallogr. , 22, pp. 151-152(1967).
    47.H.M. Rietveld, J. Appl. Crystallogr., 2, pp. 65-71(1969).
    48.R.A. Young, “The rietveld method”, Oxford university press, New York(2002).
    49.A. C. Larson and R. B. Dreele, “General Structure Analysis System”, Los Alamos National Laboratory, Los Alamos, NM87545 (1990).
    50.E. Barsoukov, J.R. Macdonald, “Impedance Spectroscopy, Theory Experiment and Applications”, John Wiley & Sons, Inc., New York (2005).
    51.謝孟儒,「摻雜之鑭鉬氧化物作為固態氧化物燃料電池電解質的製備與材料性質」,碩士論文,國立台灣科技大學,台北 (2004)。

    無法下載圖示 全文公開日期 2014/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE