簡易檢索 / 詳目顯示

研究生: 何杰珉
Jie-Min Ho
論文名稱: 整合兩個水平直線奈米流道連結曲線奈米流道以及垂直直線奈米流道的加工模擬模式和原子力顯微鏡之實驗驗證
Machining simulation model of integration of two horizontal straight-line nanochannels with curved nanochannel and vertical straight-line nanochannel as well as experimental verification by atomic force microscope (AFM)
指導教授: 鄭逸琳
Yih-Lin Cheng
林榮慶
Zone-Ching LIN
口試委員: 鄭逸琳
Yih-Lin Cheng
林榮慶
Zone-Ching LIN
黃佑民
You-Min Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 142
中文關鍵詞: 曲線奈米流道垂直直線奈米流道原子力顯微鏡兩道次偏移加工法
外文關鍵詞: curved nanochannel, vertical straight-line nanochannel, atomic force microscope (AFM), two-cutting-passes offset machining method
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出加工整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道梯型凹槽到預定寬度及預定深度的模擬模式及公式。本文先利用比下壓能公式及兩道次偏移加工法,進一步推導出加工直線段奈米流道梯型凹槽到預定寬度及預定深度所需的前述各項加工參數的相關公式及模擬模式。在連接曲線加工時,由於AFM機台只能進行微小直線段加工,故本文推導出曲線與微小線段的弦高誤差的計算公式,進而提出模擬計算出由多個微小線段連結而成的近似曲線的方法。
    而在垂直段的部分。本文提出形狀堆疊觀念,在兩個水平直線流道上堆疊上一個垂直直線奈米流道,推導出加工直線段奈米流道梯型凹槽到預定寬度及預定深度所需的各項加工參數的相關公式及模擬模式。本文的形狀堆疊觀念為將計算出的垂直直線奈米流道的第一切削道次和上方水平直線奈米流道的第一切削道次與第二切削道次的偏移量相同,故垂直直線奈米流道的第一切削道次的偏移量會跟水平直線奈米流道第一切削道次以及第二切削道次間的偏移量Pn相同。本文加工兩個水平直線奈米流道連結曲線奈米流道時,先加工第一切削層,再加工第二切削層,把兩個水平直線奈米流道連結曲線奈米流道加工到預定深度30nm。然後再僅用一個切削層即可加工垂直奈米流道到預定深度30nm。
    因為垂直直線奈米流道的各切削道次進行偏移量加工時,垂直直線奈米流道的前四個切削道次以及後面七個切削道次在移除垂直直線奈米流道的體積時,有跟水平直線已切削到預定深度的移除體積相交,故本文需要在每當偏移一個偏移量Pn的切削道次時,就需要改變一次下壓力,並且使其加工深度到預定深度30nm,且可使底部上凸值小於設定值0.5nm。故經過模擬以後可看出垂直直線奈米流道只需要一個切削層便可以直接加工到預定深度30nm,所需下壓力也不會超過本文所設立最大值91.33μN 便能直接把垂直直線奈米流道加工到預定深度30nm。
    本文也提出應用較小下壓力可去除垂直直線奈米流道的微小凸起側邊的方法。其為沿著垂直直線奈米流道的各加工長度的起始點和終點所連接線段進行垂直直線的加工,其微小下壓力會造成垂直直線奈米流道的垂直線的側邊深度略微增加側邊,但此微小下壓力的大小要控制使增加的深度小於0.54nm,則可使微小的凸起側邊消除變成垂直直線的側邊。本文也提出針對整合兩個水平直線奈米流道連結曲線奈米流道及一個垂直直線奈米流道進行AFM量測實驗時的量測斷面方法及所需的直線方程式。
    最後並量測AFM實驗加工所得之結果,將量測結果和模擬結果相比較;驗證本文所提出整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道到預定寬度及預定深度的模擬模式和公式及AFM實驗加工方法為合理可接受的。綜上所述,本文具有學術創新性及應用價值。


    The paper proposes a simulation model and equation for machining and integrating two horizontal straight-line nanochannels with curved nanochannel and a vertical straight-line nanochannel’s trapezium groove to the expected width and expected depth. First of all, the paper uses specific down force energy (SDFE) equation and two-cutting-pass offset machining method to further derive the related equations and simulation models for the various aforesaid machining parameters that are required for machining of a straight-line-segment nanochannel’s trapezium groove to the expected width and expected depth. During machining of curve connection, since atomic force microscope (AFM) machine can only perform machining of tiny straight line segments only, the paper derives a calculation equation of chord height tolerance between curve and tiny line segment, and further develops a quasi-curve simulated calculation method that is formed by connection of multiple tiny line segments.
    As to the part of vertical line segment, the paper proposes a concept of shape stacking that a vertical straight-line nanochannel is stacked on two horizontal straight-line channels. Then the paper derives the related equations and simulation models for the various machining parameters that are required for machining of a straight-line-segment nanochannel’s trapezium groove to the expected width and expected depth. Regarding the paper’s concept of shape stacking, let the first cutting pass of the calculated vertical straight-line nanochannel have the same offset amount as the first cutting pass and the second cutting pass of the upper horizontal straight-line nanochannel. Then the offset amount of the first cutting pass of the vertical straight-line nanochannel will be the same as the offset amount Pn of the first cutting pass and the second cutting pass of the horizontal straight-line nanochannel. During machining of two horizontal straight-line nanochannels for connecting with curved nanochannel, the paper firstly performs machining of the first cutting layer, and then the second layer, and connects the two horizontal straight-line nanochannels with the curved nanochannel for machining to the expected depth 30nm. After that, just using a cutting layer only, the paper can perform machining of the vertical nanochannel to the expected depth 30nm.
    During offset amount machining of vertical straight-line nanochannel at different cutting passes, when the volume of vertical straight-line nanochannel is removed at the first four cutting passes and the last seven cutting passes of vertical straight-line nanochannel, the removal volume intersects with that of cutting of the horizontal straight line to the expected depth. Therefore, whenever an offset amount Pn is needed for offsetting at a cutting pass, this paper has to change the down force once in order to make the machining depth reach the expected depth 30nm, and make the value of protruding height on the bottom less than the set value 0.5nm. As a result, after simulation, we can see that just using a cutting layer only, a vertical straight-line nanochannel can be directly machined to the expected depth 30nm. Besides, with the required down force also not exceeding paper preset maximum value 91.33μN, the vertical straight-line nanochannel can be directly machined to the expected depth 30nm.
    This paper also develops a method that applies a smaller down force to remove the slightly protruding lateral side on the vertical straight-line nanochannel. The method is that vertical straight line machining is performed for the line segment connecting the starting and ending points of each machining length along the vertical straight-line nanochannel. The tiny down force would slightly increase the depth of the lateral side of the vertical line of the vertical straight-line nanochannel. But the size of this tiny down force has to be controlled in order to make the increased depth to be less than 0.54nm, and then makes the slightly protruding lateral side removed to become a vertical straight-line lateral side. In addition, focusing on integration of two horizontal straight-line nanochannels with curved nanochannels and a vertical straight-line nanochannel, the paper also proposes a cross-section measurement method and the required straight line equation for conducting of AFM measurement experiment.
    Finally, the paper measures the results obtained from the AFM experimental machining, and then compares the measurement results with the simulation results, thus proving that the paper’s proposed simulation models and equations for integrating two horizontal straight-line nanochannels with curved nanochannels and a vertical straight-line nanochannel to the expected width and expected depth, as well as the AFM experimental machining method are all reasonable and acceptable. To conclude, this paper is academically innovative and of high applicability.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1前言 1.2研究動機與目的 1.3文獻回顧 1.3.1原子力顯微鏡奈米加工之文獻 1.3.2切削深度及多道次加工之文獻 1.4本文架構 第二章 原子力顯微鏡簡介與實驗方法 2.1原子力顯微鏡操作原理 2.2原子力顯微鏡的操作模式 1 2.2.1接觸模式(Contact mode CM) 2.2.2非接觸模式(Non-contact mode NCM) 2.2.3敲擊模式(Tapping mode TM) 2.3實驗設備介紹 2.3.1多模態原子力顯微鏡D3100 2.3.2原子力顯微鏡之常用探針 2.4奈米切削實驗設定(Experimental set-up) 2.4.1實驗試片及探針 2.4.2單晶矽晶圓材料 2.5AFM探針下壓力量測方法 第三章 建立加工直線段奈米流道梯形凹槽到預定寬度及預定深度之理論模式及切削規劃 3.1比下壓能理論模型及計算比下壓能方法 3.2直線段奈米流道梯形凹槽之兩道次偏移加工法 3.3建立加工直線段奈米流道梯形凹槽到預定深度及預定寬度之方法 3.4直線段不同切削道次路徑規劃及探討 第四章 建立整合水平直線奈米流道連結曲線奈米流道到預定寬度與預定深度之切削加工模擬模式 4.1建立理想曲線加工之曲線方程式 4.2建立偏移後的各切削道次的曲線方程式 4.3建立微小直線近似曲線之線段 第五章 整合兩個水平奈米流道連結曲線奈米流道及一個垂直直線奈米流道加工到預定寬度與預定深度之加工模擬方法及去除微小凸起側邊的方法 5.1整合兩個水平奈米流道連結曲線奈米流道及一個垂直直線奈米流道加工到預定寬度與預定深度之加工模擬方法 5.1.1整合水平直線奈米流道和垂直直線奈米流道加工方法 5.2建立兩個水平直線連結曲線第一切削道次及第二切削道次理想曲線微小直線段座標點計算方法 5.2.1建立上方水平直線連結曲線加工之第一切削道次微小直線段近似曲線方程式 5.2.2建立上方水平直線連結曲線加工之第二切削道次微小直線段近似曲線方程式 5.2.3建立下方水平直線連結曲線加工之第一切削道次以及第二切削道次微小直線段近似曲線方程式 5.3去除垂直直線奈米流道之垂直直線奈米流道微小凸起側邊方法 第六章 整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道的AFM實驗量測驗證方法 6.1 整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道之實驗量測步驟說明 6.2 量測驗證整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道之曲線奈米流道的方法 6.3整合兩水平直線奈米流道和一個垂直直線奈米流道加工之驗證垂直直線奈米流道及驗證去除微小凸起側邊之方法 6.3.1驗證垂直直線奈米流道之方法 6.3.2驗證垂直直線奈米流道之微小凸起側邊之方法 第七章 整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道到預定寬度及預定深度的模擬模式的模擬結果與AFM實驗及量測驗證結果 7.1建立整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道到預定深度與預定寬度之奈米流道之模擬結果 7.1.1 第一切削道次及第二切削道次理想曲線座標點計算結果 7.1.2建立四捨五入微小直線段近似曲線之結果 7.1.3建立整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道到預定深度23.014nm之模擬結果 7.1.4建立整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道到預定深度30nm之模擬結果 7.2 整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道加工步驟與量測驗證的量測斷面 7.2.1整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道加工步驟及量測步驟 7.2.2整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道量測驗證的量測斷面 7.3整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道加工之曲線之模擬結果與實驗驗證 7.3.1整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道加工到預定深度23nm之水平直線奈米流道連結曲線奈米流道之模擬結果與量測驗證 7.3.2整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道加工到預定深度23nm之垂直直線奈米流道之模擬結果與量測驗證 7.3.3整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道加工到預定深度30nm之水平直線奈米流道連結曲線奈米流道之模擬結果與量測驗證 7.3.4整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道加工到預定深度30nm之垂直直線奈米流道之模擬結果與量測驗證 7.3.5整合兩個水平直線奈米流道連結曲線奈米流道以及一個垂直直線奈米流道加工到預定寬度及預定深度之去除微小凸起側邊之模擬結果與量測驗證 第八章 結論 參考文獻

    [1] Binning, G., Quate, C. F. and Gerber, C., ”Atomic Force Microscope”, Physical Review Letters, Vol. 56, No. 6, pp.930-933 (1986).
    [2] Nanjo, H., Nony, L., Yoneya, M. and Aime, J. P.,”Simulation of Section Curve by Phase Constant Dynamic Mode Atomic Force Microscopy in Non-contact Situation”, Applied Surface Science, Vol. 210, No. 1, pp. 49-53 (2003).
    [3] Lübben, J. F. and Johannsmann, D., “Nanoscale High-frequency Contact Mechanics Using an AFM Tip and a Quartz Crystal Resonator”, Langmuir, Vol. 20, No. 9, pp. 3698-3703 (2004).
    [4] Tseng, A. A., Jou, S., Notargiacomo, A. and Chen, T. P., ”Recent Developments in Tip-based Nanofabrication and Its Roadmap”, Journal of Nanoscience & Nanotechnology, Vol. 8, No. 5, pp. 2167–2186 (2008).
    [5] Fang, T. H., Weng, C. I. and Chang, J. G., ”Machining Characterization of Nano-lithography Process by Using Atomic Force Microscopy”, Nanotechnology, Vol. 11, No. 5, pp. 181-187 (2000).
    [6] Schumacher, H. W., Keyser, U. F. and Zeitler, U., “Controlled mechanical AFM machining of two-dimensional electron systems: Fabrication of a single-electron transistor”, Physica E., Vol. 6, pp. 860-863 (2000).
    [7] Yongda, Y., Tao, S., Liang, Y. C. and Shen, D., “Investigation on AFM based micro/nano CNC machining system”, International Journal of Machine Tools and Manufacture, Vol. 47, No. 11, pp.1651-1659 (2007).
    [8] Wang, Z. Q., Jiao, N. D., Tung, S. and Dong, Z. L., “Research on the atomic force microscopy-based fabrication of nanochannels on silicon oxide surfaces”, Chinese Science Bulletin, Vol. 55, No. 30, pp. 3466-3471 (2010).
    [9] Tseng, A. A., “A comparison study of scratch and wear properties using atomic force microscopy”, J. Applied Surface Science, Vol. 256, Issue 13, pp. 4246- 4252 (2010).
    [10] Ermer, D. S., “Optimization of the constrained machining economics problem by geometric programming”, Transactions of ASME Journal of Engineering for Industry, Vol. 93, pp. 1067-1072 (1971).
    [11] Chen, M. C. and Tsai, D. M., “A simulated annealing approach for optimization of multipass turning operations”, International Journal of Production Research, Vol. 34, pp. 2803-2825 (1996).
    [12] Shunmugam, M. S., Bhaskara, S. V. and Narendran, T. T., “Selecion of optimal conditions in multi-pass face-milling using a genetic algorithm”, International Journal of Machine Tools and Manufacture, Vol.40, pp. 401-414 (2000).
    [13] Satishkumar, S., Asokan, P. and Kumanan, S., “Optimization of depth of cut in multi-pass turning using nontraditional optimization technology”, International Journal of Advanced Manufacturing Technology, Vol.29, pp. 230-238 (2006).
    [14] Özen, S., and Bayhan, G. M., “Optimization of depth of cut in multi-pass machining using Hopfield type neural networks”, Proceedings of the 2011 International Conference on Industrial Engineering and Operations Management Kuala Lumpur, Malaysia, January, pp. 22-24 (2011).
    [15] Li, J. G., Yong, L., Hang, Z., Peng, L. and Yao, Y. X., “Optimization of cutting parameters for energy saving”, Int J Adv Manuf Technol, Vol. 70, pp. 117-124 (2014).
    [16] Geng, Y. Q., Yan, Y. D., Xing, Y. M., Zhao, X. S. and Hu, Z. J., “Modelling and experimental study of machined depth in AFM-based milling of nanochannels”, International Journal of Machine Tools & Manufacture, Vol. 73, pp. 87-96 (2013).
    [17] Bourne, K. A., Kapoor, S. G. and DeVor, R. E., “Study of a High Performance AFM Probe-Based Microscribing Process”, J. Manuf. Sci., Vol. 132, No. 3 (2010).
    [18] Lin, Z. C. and Hsu, Y. C., “A calculating method for the fewest cutting passes on sapphire substrate at a certain depth using specific down force energy with an AFM probe”, Journal of Materials Processing Technology, Vol. 212, pp. 2321-2331 (2012).
    [19] 馬士閎, “單晶矽奈米流道梯型凹槽最少切削道次估算及驗證”國立台灣科技大學機械工程研究所,碩士論文,民國105年。
    [20] 方信人, “單晶矽奈米流道曲線加工到預定寬度及深度之模擬模式建立及實驗驗證”國立台灣科技大學機械工程研究所,碩士論文,民國107年。
    [21] Yeh, S. S. and Hsu, P. L., “Adaptive-feedrate Interpolation for Paramertic Curves with a Confined Error” Computer-Aided Design, Vol. 34, pp. 229-237 (2002).
    [22] 王昱菘,“整合喇叭型奈米流道及水平和垂直奈米流道到預定寬度及預定深度模擬模式建立及實驗驗證” 國立台灣科技大學機械工程研究所,碩士論文,民國108年。
    [23] 秦英傑,“雙圓弧與直線連結奈米流道之建模及實驗驗證” 國立台灣科技大學機械工程研究所,碩士論文,民國109年。
    [24] Teerasong, S. and McClain, R., “A Student-Made Microfluidic Device for Electrophoretic Separation of Food Dyes”, Journal of Chemical Education, Vol. 88, pp.465-467(2011).
    [25] Liu, S., Ma, Y. and Bai, B., “Flow patterns of oil–water two-phase flow during pressure-driven process in nanoscale fluidic chips “ Microfluids and Nanofluids, Vol,22,No.39,PP.1-22(2018).
    [26] Cardoso, V. F., Mirandaa, D., Botelhoc, G., Minasb, G. and Lanceros-Méndeza, S., “Highly effective clean-up of magnetic nanoparticles using microfluidic technology” Sensors and Actuators B, Vol. 255, pp. 2384–2391 (2018).
    [27] Digital Instruments Dimension™ 3100 Manual. Version 4.43B, Digital Instruments Veeco Metrilogy Group (2000).
    [28] 蔡竺孝, “以原子力顯微鏡探針利用比下壓能之觀念建立藍寶石基板凹槽圖形加工方法及實驗研究” 國立台灣科技大學機械工程研究所,碩士論文,民國100年

    無法下載圖示 全文公開日期 2024/07/26 (校內網路)
    全文公開日期 2024/07/26 (校外網路)
    全文公開日期 2024/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE