簡易檢索 / 詳目顯示

研究生: 林嘉祥
Chia-Hsiang Lin
論文名稱: 改良式暗通道先驗與多尺度裁切限制直方圖均化之夜間除霧演算法
Nighttime Image Dehazing Based on Improved Erosion Dark Channel and Multi-scale Clipping Limit Histogram Equalization
指導教授: 郭景明
Jing-Ming Guo
口試委員: 丁建均
Jian-Jiun Ding
花凱龍
Kai-Lung Hua
徐繼聖
Gee-Sern Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 139
中文關鍵詞: 影像增強暗通道先驗夜間除霧多尺度裁切限制除霧
外文關鍵詞: Image enhancement, dark channel prior, nighttime dehazing, multi-scale clipping limit, dehazing
相關次數: 點閱:287下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在拍攝夜間有霧霾的影像時,常常因為霧霾及不均勻的地方光源而導致能見度變差及色彩失真。在這些情況下,若是使用常見的日間除霧演算法會因為地方光源的影響而導致大氣光的值變大,並影響到傳輸率之結果,從而導致在夜間霧霾影像進行除霧時會有過度除霧而產生雜訊放大及人工偽影(artifact)的產生。因此本論文提出一個新的夜間除霧演算法,透過修改He[2]等人所提出的暗通道先驗中所使用之大氣光及傳輸率之計算方式,我們首先利用提出的以高斯和侵蝕運算為基礎之暗通到先驗來達到抑制地方光源的影響,再藉由我們所提出修改的傳輸率計算方法,也就是將侵蝕運算子結合傳輸率後再進行細化之運算,而在細化之運算中我們在此篇論文提出了多尺度引導式濾波器的方法,將我們利用上述所改良之傳輸率輸入至我們所提出的多尺度引導式濾波器進行細化,透過上述所提出之三個新穎的改良計算方法,我們可以有效的抑制在對夜間霧霾影像進行除霧時,常常會產生過度除霧而導致過暗之問題,或是產生人工偽影及雜訊過於放大。
在本論文中,除了上述三個在此篇論文所提出對除霧演算法做了改良之外,我們也結合了Guo [22]等人所提出的ICLAHE的方法,並將此ICLAHE做了改良並提出了多尺度裁切限制的ICLAHE,藉由所提出之多尺度裁切限制的ICLAHE,我們可以得到更好的細節資訊,並與上述修改的大氣光及傳輸率做結合,從而得到一個新穎的夜間除霧演算法。在本論文中,會與最新的夜間除霧演算法的結果及計算複雜度做一個比較,並從實驗結果中我們可以得知在此篇論文中所提出的方法有最好之夜間除霧的效果及最有效率之計算速度。


Photographs taken at night time with haze often suffers from poor visibility and color distortion due to uneven local light sources. In this scenario, the common daytime dehazing algorithm results increased atmospheric light due to the influence of local light sources. Due to this, the result of the transmission is affected, resulting in excessive haze removal, noise amplification and artifacts introduction. Consequently, this thesis proposes a new night time dehazing algorithm by modifying the calculation method of atmospheric light and transmission used in the dark channel priors proposed by He[2]. First, the proposed erosion Gaussian-based dark channel is applied to suppress local light sources. Subsequently, a modified transmission calculation method is proposed which combines the erosion operator with the transmission. As the transmission is obtained, the refinement operation is performed. The multi-scale guided filter utilizing improved transmission is applied to the proposed multi-scale guided filters for refinement. Through this improved calculations, the unpleasant issues can be well controlled, including excessive dehazing, excessive darkness, artifacts and excessive amplification of noise.
In addition to the above three improvements on the dehazing algorithm, the ICLAHE proposed by Guo[22] et al is also modified with multi-scale clipping limits to further improve the image quality. With the proposed Multi-scale clipping limit of ICLAHE, details can be obtained. As documented in the experimental results, the proposed method can yield superior performance towards nighttime dehazing effect and of less computational complexity in comparison against the state-of-the-art methods.

中文摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 VI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 論文架構 2 第二章 文獻探討 3 2.1 光學模型 3 2.2 除霧演算法探討 4 2.2.1 He et al. [2]: 4 2.2.2 Li et al. [6]: 8 2.2.3 Meng et al. [3]: 11 2.2.4 Lai et al. [7]: 15 2.2.5 Xie et al. [12]: 19 2.2.6 Fattal et al. [5]: 20 2.2.7 Zhu et al. [8]: 23 2.2.8 Pei et al. [16]: 30 2.2.9 Zhang et al. [17]: 35 2.2.10 Li et al. [18]: 39 2.2.11 Ancuti et al. [19]: 44 2.2.12 Santra et al. [20]: 50 2.2.13 Zhang et al. [21]: 54 第三章 改良式暗通道先驗與多尺度裁切限制直方圖均化之夜間除霧演算法 58 3.1 以高斯和侵蝕運算為基礎之暗通道(Gaussian-based dark channel erosion) 60 3.2 經細化及侵蝕運算的傳輸率(Erosion Transmission Refinement) 64 3.3 多尺度引導式濾波器(Multi-scale Guided Filter) 72 3.4 多尺度裁切限制的積分對比限制自適應直方圖等化(Multi-scale Clipping Limits of ICLAHE) 77 3.4.2 多尺度裁切限制的積分對比限制自適應直方圖等化 87 3.5 實驗結果 92 3.5.1 定性評估(Qualitative Assessment): 93 3.5.2 主觀用戶研究(Subjective User Study): 96 3.5.3 時間複雜度(Computation Complexity): 98 3.5.4 夜間除霧結果(Nighttime Dehazing Result): 98 3.6 實驗涉及之相關技術 116 3.6.1 引導式濾波器[10]: 116 第四章結論與未來展望 120 參考文獻 121

[1] H. Koschmider, "Theorie der horizontalen Sichtweite," in Proc. Beiträgezur Phys. der Freien Atmos., 1924, pp. 171–181.
[2] K. He, J. Sun, and X. Tang, "Single Image Haze Removal Using Dark Channel Prior," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 12, pp. 2341–2353, Dec. 2011
[3] G. Meng, Y. Wang, J. Duan, S. Xiang, C. Pan. "Efficient Image Dehazing with Boundary Constraint and Contextual Regularization." Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV), 2013, December, pp. 617–624.
[4] K. Tang, J. Yang, and J. Wang, “Investigating Haze-Relevant Features in a Learning Framework for Image Dehazing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2014.
[5] R. Fattal, “Dehazing using color-lines,” ACM Trans. on Graph., 2014.
[6] W. J. Li, B. Gu, J. T. Huang , S. Y. Wang, and M. H. Wang, "Single Image Visibility Enhancement in Gradient Domain," IET Image Process., vol. 6, no. 5, pp. 589–595, Jul. 2012
[7] Y. Lai, Y. Chen, C. Chiou, and C. Hsu, "Single-Image Dehazing via Optimal Transmission Map Under Scene Priors", IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 1, pp. 1-14, 2015.
[8] Q. Zhu, J. Mai and L. Shao, "A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior," Image Processing, IEEE Transactions on, On page(s): 3522 - 3533 Volume: 24, Issue: 11, Nov. 2015.
[9] J. Kim, W. Jang, J. Sim and C. Kim, "Optimized Contrast Enhancement for Real-time Image and Video Dehazing", Journal of Visual Communication and Image Representation, vol. 24, no. 3, pp. 410-425, 2013.
[10] K. He, J. Sun and X. Tang, "Guided Image Filtering", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 6, pp. 1397-1409, 2013.
[11] Z. Wang and Q. Li, "Information Content Weighting for Perceptual Image Quality Assessment," IEEE Trans. Image Process., vol. 20, no. 5, pp. 1185–1198, May 2011
[12] B. Xie, F. Guo, and Z. Cai, “Improved single image dehazing using dark channel prior and multi-scale retinex,” in Proc. Int. Conf. Intell. Syst. Design Eng. Appl., Oct. 2010, pp. 848–851.
[13] A. K. Moorthy and A. C. Bovik, "Blind Image Quality Assessment: From Natural Scene Statistics to Perceptual Quality," IEEE Trans. Image Process., vol. 20, no. 12, pp. 3350–3364, Dec. 2011.
[14] J. H. Kim, W. D. Jang, J. Y. Sim, and C. S. Kim, “Optimized Contrast Enhancement for Real-Time Image and Video Dehazing,” Journal of Visual Communication and Image Representation, vol. 24, no. 3, pp. 410–425, 2013.
[15] K. Ma , W. Liu and Z. Wang, "Perceptual Evaluation of Single Image Dehazing Algorithms," in IEEE International Conference of Image Processing (ICIP), 27-30 Sept. 2015.
[16] S. C. Pei and T. Y. Lee, “Nighttime Haze Removal Using Color Transfer Pre-processing and Dark Channel Prior,” In IEEE International Conference on Image Processing (ICIP), pp. 957–960, Sept 2012.
[17] J. Zhang, Y. Cao, and Z. Wang, “Nighttime Haze Removal Based on a New Imaging Model,” in IEEE International Conference on Image Processing (ICIP), pp. 4557–4561, Oct 2014.
[18] Y. Li, R. T. Tan, and M. S. Brown, “Nighttime haze removal with glow and multiple light colors,” In IEEE Int. Conf. on Computer Vision, 2015.
[19] C. O. Ancuti and C. Ancuti, “Night-time Dehazing by Fusion,” In IEEE International Conference on Image Processing (ICIP), Sept. 2016.
[20] S. Santra and B. Chanda, “Day/Night Unconstrained Image Dehazing,” in IEEE International Conference on Pattern Recognition, Dec. 2016.
[21] J. Zhang, Y. Cao and S. Fang, “Fast Haze Removal for Nighttime Image Using Maximum Reflectance Prior,” in Computer Vision and Pattern Recognition (CVPR), July 2017.
[22] J. M. Guo and J. Y. Syue, “An Efficient Fusion-Based Defogging,” in IEEE Transactions on Image Processing, vol. 26, issue 9, pp. 4217 – 4228, Sept. 2017.
[23] X. Chen, S. B. Kang, J. Yang, and J. Yu, "Fast Edge-Aware Denoising by Approximated Patch Geodesic Paths", IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 6, pp. 897-909, 2015.
[24] X. Kang, S. Li, and J. A. Benediktsson, "Spectral–Spatial Hyperspectral Image Classification with Edge-Preserving Filtering," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2666–2677, May 2014.
[25] C. T. Shen, H. H. Liu, M. H. Yang, Y. P. Hung and S. C. Pei, "Viewing-Distance Aware Super-Resolution for High-Definition Display", IEEE Transactions on Image Processing, vol. 24, no. 1, pp. 403-418, 2015.
[26] D. Berman, T. Treibitz and S. Avidan, “Non-local Image Dehazing,” In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[27] L. K. Choi, J. You and A. C. Bovik, “Referenceless Prediction of Perceptual Fog Density and Perceptual Image Defogging,” in IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 3888–3901, Nov 2015.
[28] Y. Bahat and M. Irani, “Blind Dehazing Using Internal Patch Recurrence,” In IEEE International Conference on Computational Photography (ICCP), 2016.
[29] K. Zuiderveld, “Contrast Limited Adaptive Histogram Equalization,” Graphics Gems IV, Academic Press, 1994.
[30] https://140.118.7.71/share.cgi?ssid=0s3Fu7u.

QR CODE