簡易檢索 / 詳目顯示

研究生: 陳衍詳
Yen-Hsiang Chen
論文名稱: 一種植基於高效率功率控制與背光補償之低功率顯示系統設計
A Low-power Display System Based on Efficient Power Control with Backlight Compensation
指導教授: 阮聖彰
Shanq-Jang Ruan
口試委員: 陳維美
Wei-Mei Chen
許孟超
Mon-Chau Shie
林昌鴻
Chang-Hong Lin
蔡坤霖
Kun-Lin Tsai
呂政修
Jenq-Shiou Leu
黃士嘉
Shih-Chia Huang
白御廷
Yu-Ting Pai
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 104
中文關鍵詞: 低功率背光控制影像增強顯示系統
外文關鍵詞: Low power, backlight control, image enhancement, dispaly system.
相關次數: 點閱:364下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前市面上的平板電腦、智慧型手機、個人行動助理、數位相機、以及其他的手持式裝置都是靠電池來提供電力。然而,電池的技術發展卻遠落後於半導體以及應用軟體的效能成長。目前的手持式裝置更以輕、薄、短、小做為設計導向,而電池本身必須同時考慮電池容量和體積。因此,電池的長效性發展通常無法完全解決裝置蓄電量不足的問題。

    目前針對可攜裝置的功率節省技術可以分為低耗能積體電路設計、顯示卡與螢幕控制器的控制界面設計、以及背光控制三個種類。低功率積體電路技術是以時脈閘控、電源閘控、和動態電源頻率調整等方式來減少耗電量。顯示卡與螢幕控制器的控制界面設計是減少訊號傳輸的串音干擾和其他訊號延遲來避免額外的功率消耗。背光控制技術則是直接將顯示器需要使用背光進行節能設計。相較於成熟的低功率積體電路和匯流排編解碼設計,背光控制技術仍然具備十分重大的發展性。

    本研究突破以往低功率技術只能依賴IC設計和匯流排編解碼的限制,並發展出一種新的背光控制技術來完成低功率顯示系統設計,同時輔以背光補償技術來增強顯示效果。本研究提出的背光控制與補償技術同時依據影像處理的統計資料做計算,因此具備背光調降和影像補償之間的比例性。經由電路功率消耗的實際量測與視覺檢驗兩種測試指出,本論文提出的方法能夠更節能地呈現影像的顯示效果。


    Batteries are the source of electric power for many portable devices, such as Tablet PC, smart phone, Personal Digital Assistant (PDA), and digital camera. As weight, thickness, length, and size are four directions of developing portable devices, lightweight is also considered natural for designing batteries. In contrast with the development of semiconductor and applicable software, the technique of batteries is scientifically backward. Therefore, the current techniques of batteries are still hard to deal with the mentioned problems.

    In general, for portable devices, low power techniques can be developed by integrated circuit (IC) design, low-power digital/analog interface between the graphics controller and the LCD controller, and backlight control for displaying. Low power IC focuses on the efficiency of DC/AC power inverters, the reduction of the working voltage and frequency, and the limitation of unnecessary power consumption in either idle mode or unused circuits. The low-power digital/analog interface scheme puts emphasis on the concurrent reduction of power consumption, noise, and delay time for the switching traffic. Color thin-film transistor (TFT) liquid crystal displays (LCDs) are equipped to many consumer products, while the backlight control is contributory to lower the power consumption for display systems.

    As the IC technique and bus codec are ripe for the low power issue, backlight control technique is still developing toward for the multimedia application.
    Therefore, this thesis highlights the backlight power consumption and compensates for the degraded quality of the image due to the scaled LCDs. The proposed method uses image processing algorithm to adjust power, while the related statistics are further included to dynamically compensate the image according to the original probability density. In other words, the balance between backlight reduction and image compensation is achieved according to the content of the displayed image. Experimental results demonstrate that the proposed method can reduce the power consumption of the display system, while the image can be enhanced to effectively present the visual effect.

    Recommendation Form i Committee Form ii Chinese Abstract iii English Abstract iv Acknowledgements vi Table of Contents vii List of Tables xi List of Figures xii Table of Algorithms xv 1 Introduction 1 1.1 Challenges 1 1.2 Motivations 2 1.3 Approaches 5 1.4 Contributions 7 1.5 Organization 7 2 Background 9 2.1 Characteristics of an LCD 9 2.2 Principle of LCD Luminance 13 2.3 Transmittance Scaling 14 2.4 Discussions 15 3 Backlight Dimming Techniques 16 3.1 Hardware Design of Backlight Modules 16 3.2 Backlight Dimming Control Algorithms 19 3.3 Discussions 21 4 Backlight Compensation Algorithms 23 4.1 Spatial-Domain Filter 23 4.2 Frequency-Domain Filter 24 4.3 Histogram Modification 26 4.4 Discussion 27 5 Low-power Display System 29 5.1 System Architecture 29 5.2 Embedded Solution 31 5.3 Backlight Control 32 5.4 Backlight Compensation 34 5.5 Color Models 36 5.5.1 RGB Color Model 37 5.5.2 HSV Color Model 37 5.5.3 YUV Color Model 38 5.5.4 YCbCr Color Model 39 5.6 Color Model Analysis 39 6 Experimental Results 40 6.1 Analysis of System Power Distribution 40 6.2 Measurement of Backlight Power Consumption 42 6.3 Quality Measurement 43 6.4 Time Consumption 44 6.5 Implementation of the Embedded Solution 45 7 Related Low-power Display Techniques 56 7.1 Dynamic Voltage Scaling (DVS) Techniques 56 7.2 Frame Buffer Modification Techniques 59 7.3 Other Hardware-based Techniques 60 7.4 Summary 63 8 Conclusion and Future Work 64 8.1 Contribution of the Dissertation 64 8.2 Future Work 65 References 66 Appendix 70 Vita 88 Copyright Form 88

    [1] A. Maheshwari, W. Burleson, and R. Tessier, “Trading off transient fault tolerance and power consumption in deep submicron (DSM) VLSI circuit,”IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 3, pp. 299-311, Mar. 2004.
    [2] S.-J. Ruan, T.-C. Kan, and J.-C. Hsu, “A novel crosstalk quantitative approach for simultaneously reducing power, noise, and delay based on invert-base bus encoding schemes,”IEEE/ACM Great Lakes Symposium on VLSI (GLSVLSI), May 2010, pp. 357-360.
    [3] P.-S. Tsai, C.-K. Liang, T.-H. Huang, and H. H. Chen, “Image enhancement for backlight-scaled TFT-LCD displays,”IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 4, pp.574-583, Apr. 2009.
    [4] H. Cho and O.-K. Kwon, “A local dimming algorithm for low power LCD TVs using edge-type LED backlight,”IEEE Trans. Consum. Electron., vol. 56, no. 4, pp. 2054-2060, Nov. 2010.
    [5] C.-L. Chu, T.-L. Chiu, and K.-H. Chen, “Pseudo zero-dimension dimming for power reduction in field sequential color liquid crystal display systems,”J. Disp. Technol., vol. 6, no. 8, pp. 323-331, Aug. 2010.
    [6] D. Cho, W.-S. Oh, and G. W. Moon, “A novel adaptive dimming LED backlight system with current compensated X-Y channel drivers for LCD TVs,”J. Disp. Technol., vol. 7, no. 1, pp. 29-35, Jan. 2011.
    [7] H. Nam, “Low power active dimming liquid crystal display with high resolution backlight,”Electron. Lett., vol. 47, no. 9, pp. 538-540, Apr. 2011.
    [8] C.-C. Lai and C.-C. Tsai, “Backlight power reduction and image contrast enhancement using adaptive dimming for global backlight applications,”IEEE Trans. Consum. Electron., vol. 54, no. 2, pp. 669-674, May 2008.
    [9] H. Cho and O.-K. Kwon, “A backlight dimming algorithm for low power and high image quality LCD applications,”IEEE Trans. Consum. Electron., vol. 55, no. 2, pp. 839-844, May 2009.
    [10] S.-J. Kang and Y. H. Kim, “Image integrity-based gray-level error control for low power liquid crystal displays,”IEEE Trans. Consum. Electron., vol. 55, no. 4, pp. 2401-2406, Nov. 2009.
    [11] T.-H. Kim, K.-S. Choi, and S.-J. Ko, “Backlight power reduction using efficient image compensation for mobile devices,”IEEE Trans. Consum. Electron., vol. 56, no. 3, pp. 1972-1978, Aug. 2010.
    [12] J.-J. Hong, S.-E. Kim, and W.-J. Song, “A clipping reduction algorithm using backlight luminance compensation for local dimming liquid crystal displays,”IEEE Trans. Consum. Electron., vol. 56, no. 1, pp. 240-246, Feb. 2010.
    [13] H. Jung, Y. Lee, B. Choi, and D. Y. Suh, “Cooperative local dimming for accurate backlight brightness matching,”Electron. Lett., vol. 47, no. 4, pp. 252-254, Feb. 2011.
    [14] S.-J. Kang and Y. H. Kim, “Multi-histogram-based backlight dimming for low power liquid crystal displays,”J. Disp. Technol., vol. 7, no. 10, pp. 544-549, Oct. 2011.
    [15] Y.-K. Lai, Y.-F. Lai, and P.-Y. Chen, “Content-based LCD backlight power reduction with image contrast enhancement using histogram analysis,”J. Disp. Technol., vol. 7, no. 10, pp. 550-555, Oct. 2011.
    [16] N. Chang, I. Choi, and H. Shim, “DLS: Dynamic backlight luminance scaling of liquid crystal display,”IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 8, pp. 837-846, Aug. 2004.
    [17] S. S. Agaian, K. Panetta, and A. M. Grigoryan, “Transform-based image enhancement algorithms with performance measure,”IEEE Trans. Image Process., vol. 10, no. 3, pp. 367-382, Mar. 2001.
    [18] R. Schettini, F. Gasparini, S. Corchs, F. Marini, A. Capra, and A. Castorina, “Contrast image correction method,”J. Electron. Imaging, vol. 19, no. 2, 023005, Apr.-Jun. 2010.
    [19] S. Lee, H. Kwon, H. Han, G. Lee, and B. Kang, “A space-variant luminance map based color image enhancement,”IEEE Trans. Consum. Electron., vol. 56, no. 4, pp. 2636-2643, Nov. 2010.
    [20] S. Lee, V. H. S. Ha, and Y.-H. Kim, “Dynamic range compression and contrast enhancement for digital images in the compressed domain,”Opt. Eng., vol. 45, no. 2, 027008, Feb. 2006.
    [21] H. D. Cheng, R. Min, and M. Zhang, “Automatic wavelet base selection and its application to contrast enhancement,”Signal Process., vol. 90, no. 4, pp. 1279-1289, Apr. 2010.
    [22] Z.-G. Wang, Z.-H. Liang, and C.-L. Liu, “A real-time image processor with combining dynamic contrast ratio enhancement and inverse gamma correction for PDP,”Displays, vol. 30, no. 3, pp. 133-139, Jul. 2009.
    [23] F.-C. Cheng and S.-J. Ruan, “Image quality analysis of a novel histogram equalization method for image contrast enhancement,”IEICE Trans. Inf. and Syst., vol. E93-D, no.7, pp. 1773-1779, Jul. 2010.
    [24] Inseok Choi, Hojun Shim, and Naehyuck Chang, “Low-power color TFT LCD display for hand-held embedded systems,”In Proceedings of the 2002 international symposium on Low power electronics and design, ACM, pp. 112-117, 2002.
    [25] Franco Gatti, Andrea Acquaviva, Luca Benini, and Bruno Ricco,“Low Power Control Techniques For TFT LCD Displays,”In Proceedings of the 2002 international conference on Compilers, architecture, and synthesis for embedded systems, ACM, pp. 395-398, 2002.
    [26] FJung-hi Min and Hojung Cha, “Reducing display power in DVS-enabled handheld systems,”In Proceedings of the 2007 international symposium on Low power electronics and design, ACM, pp. 218-224, 2007.
    [27] Wei-Chung Cheng and M. Pedram, “Chromatic encoding: a low power encoding technique for digital visual interface,”Design, Automation and Test in Europe Conference and Exhibition, 2003, pp. 694-699, 2003.
    [28] M. Anandan, “LED backlight for LCD,'' in Proceedings of the 27th international display research conference, Moscow, pp. 7-10, 2007.
    [29] W.-C. Cheng, Y. Hou and M. Pedram, ``Power minimization in a backlit TFT-LCD display by concurrent brightness and contrast scaling,'' IEEE Trans. Consumer Electron., vol. 50, no. 1, pp. 25-32, Feb. 2004.
    [30] F.-H. Cheng and C.-H. Chang, ``MTF preserved sub-pixel rendering algorithms for color matrix displays,'' in Proc. 19th IPPR Conf. Computer Vision, Graphics and Image Process., vol. 5., pp. 898-903, 2006.
    [31] M. Hanmandlu and D. Jha, "An optimal fuzzy system for color image enhancement," IEEE Trans. Image Process., vol. 15, no. 10, pp. 2956-2966, Oct. 2006.
    [32] M. Hanmandlu, O. P. Verma, N. K. Kumar, and M. Kulkarni, "A novel optimal fuzzy system for color image enhancement using bacterial foraging," IEEE Trans. Instrum. Meas., vol. 58, no. 8, pp. 2867-2879, Aug. 2009.

    QR CODE