簡易檢索 / 詳目顯示

研究生: 傅煜文
Yu-Wen Fu
論文名稱: 電網級儲能案場之系統衝擊分析與機電規劃
System impact analysis and electromechanical planning for grid-scale energy storage projects
指導教授: 張宏展
Hong-Chan Chang
郭政謙
Cheng-Chien Kuo
口試委員: 邱煌仁
Huang-Jen Chiu
張建國
Chien-Kuo Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 73
中文關鍵詞: 儲能系統系統衝擊分析機電規劃儲能案場建置
外文關鍵詞: Energy Storage System, Electromechanical Design, System Impact Analysis, Energy Storage Facility Construction
相關次數: 點閱:197下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

能源短缺的議題 近年於國際上日益發酵,作為生活中不可或缺的一部分,在煤礦、石油等石化燃料逐漸供不應求,更伴隨 全球暖化與空氣汙染等環境問題,各國開始對再生能源投入開發及研究。
再生能源與石化燃料不同,發電量牽涉到天氣與環境因素,不但無法根據負載量自由調整發電量,還會因為外部因素的不穩定導致發電量有很大的波動,造成供電及用電無法匹配,以至於電網穩定度下降。 這是儲能系統就能有效的解決再生能源的缺點,可以利用儲能系統將能量存儲及釋放來調整不穩定的電網,若頻率過高時,表示供電過剩,就利用儲能系統將多餘的電力儲存起來,並在供電量不足、頻率過低的時候,將儲存的能量釋放出來,達到自動調頻的效果,以此達到穩定電網的目的。而儲能系統設計時上需要考慮到該系統併聯到電力系統運轉時對系統產生的影響,故必須進行系統衝擊分析,確保併網運作時的穩定性。此外,在儲能案場的建置上也必須按照系統衝擊分析的結果來對案場進行機電規劃,確保儲能系統本身的運轉能夠安全無虞。
本研究針對台電公司提出的調頻輔助服務進行研究,旨在設計一套併網型儲能案場來進行輔助服務。其中包含兩大部分,第一部分為儲能系統的系統衝擊分析,針對系統進行電力潮流、故障電流檢討及保護協調設計等分析;第二部分為儲能案場的機電規劃 ,藉由系統衝擊分析結果進行機電規劃,設計整體儲能系統架構,建立一套完整的儲能系統與儲能案場建置方案。


The issue of energy shortage has increasingly gained attention internationally in recent years. As an indispensable part of our lives, traditional fossil fuels such as coal and oil are becoming insufficient to meet the growing demand. Moreover, these fuels contribute to global warming and air pollution, posing significant environmental challenges. As a result, countries around the world have started investing in the development and research of renewable energy sources.
Renewable energy differs from fossil fuels in that its power generation is influenced by weather and environmental factors. Unlike conventional power plants, renewable energy sources cannot adjust their output freely based on the load demand. They are also subject to significant fluctuations in power generation due to external instabilities. This mismatch between supply and demand leads to a decrease in grid stability. This is where energy storage systems come in as an effective solution to address the shortcomings of renewable energy. Energy storage systems can store and release energy to stabilize the unreliable grid. When there is an excess supply of electricity and the frequency is too high, the surplus power can be stored in the energy storage system. On the other hand, when there is insufficient supply and the frequency is too low, the stored energy can be released to balance the grid and maintain frequency stability. Thus, energy storage systems facilitate automatic frequency regulation and contribute to stabilizing the power grid. The design of energy storage systems needs to consider the impact on the power system when the system is connected to the grid. System impact analysis is conducted to ensure the stability of grid operation during integration. Additionally, the construction of energy storage facilities must follow the results of system impact analysis in terms of electromechanical design to ensure the safe and reliable operation of the energy storage system.
This study focuses on the research and design of a grid-connected energy storage facility to provide frequency regulation ancillary services, specifically for Taipower. It consists of two main parts: The first part is system impact analysis of the energy storage system, this involves analyzing the power flow, fault currents, and protection coordination of the system. The aim is to assess the impact of integrating the energy storage system into the power grid and ensure the safe and reliable operation of the overall system. The second part, electromechanical design of the energy storage facility, based on the results of the system impact analysis, the electromechanical design of the energy storage facility is conducted. This includes designing the overall architecture of the energy storage system and establishing a comprehensive plan for the construction of the energy storage facility. The ultimate goal of this research is to design a grid-connected energy storage facility that can provide effective ancillary services, specifically frequency regulation support to Taipower.

中文摘要I Abstract II 致謝IV 目錄V 圖目錄VII 表目錄IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.3 研究方法 4 1.4 章節概述 6 第二章 儲能系統與輔助服務 8 2.1 再生能源發展 8 2.2 儲能系統概述與應用 9 2.3 輔助服務簡介 12 2.4 調頻備轉服務 15 2.4.1動態調頻備轉 (dReg) 16 2.4.2靜態調頻備轉 (sReg) 18 2.4.3增強型動態調頻備轉 (E-dReg) 19 2.4.4基準頻率移頻 21 第三章 電網級儲能案場建置系統衝擊分析與檢討 22 3.1 系統衝擊分析與檢討 22 3.2 電力潮流分析 22 3.3 故障電流檢討與計算 29 3.4 系統保護協調設計 32 3.4.1主迴路變壓器與輔電變壓器激磁點與破壞曲線 33 3.4.2過電流電驛與接地過電流電驛 34 3.4.3接地過電壓電驛保護 38 3.4.4低電壓及過電壓電驛保護 38 3.4.5方向性過電流電驛及逆送電力電驛保護 39 3.5 電壓變動率、電壓閃爍及諧波管制檢討 40 第四章 電網級儲能案場建置與機電規劃 43 4.1 電網級儲能案場機電規劃 43 4.2 全電力系統單線圖 43 4.2.1高壓盤體 43 4.2.2支路分電盤 45 4.2.3輔助電源 46 4.2.4變壓器與保護開關 47 4.2.5功率轉換系統與電池系統 48 4.3 電力設備昇位圖 49 4.4 場域平面配置圖 51 4.5 接地系統設計圖 52 4.6 儲能案場設計應用實例 56 第五章 結論與未來展望 57 5.1 結論 57 5.2 未來展望 58 參考文獻59

[1] Net Zero By 2050, International Energy Agency,
https://www.iea.org/reports/net-zero-by-2050
[2] 再生能源裝置容量統計報表 , 經濟部能源局 ,
https://www.re.org.tw/information/statistics.aspx
[3] Hou, Q., Zhang, N., Du, E., Miao, M., Peng, F., & Kang, C. (2019). Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China. Applied Energy, 242, 205-215.
[4] Lam, R. K., & Yeh, H. G. (2014, November). PV ramp limiting controls with adaptive smoothing filter through a battery energy storage system. In 2014 IEEE Green Energy and Systems Conference (IGESC) (pp. 55-60). IEEE.
[5] Guan, M. (2021). Scheduled Power Control and Autonomous Energy Control of Grid-Connected Energy Storage System (ESS) with Virtual Synchronous Generator and Primary Frequency Regulation Capabilities. IEEE Transactions on Power Systems.
[6] Guzman, E. N. S., Arriaga, M., Cañizares, C. A., Simpson-Porco, J. W., Sohm, D., & Bhattacharya, K. (2021). Regulation Signal Design and Fast Frequency Control With Energy Storage Systems. IEEE Transactions on Power Systems, 37(1), 224-236.
[7] Xu, Q., Ding, Y., Yan, Q., Zheng, A., & Du, P. (2017). Day-ahead load peak shedding/shifting scheme based on potential load values utilization: theory and practice of policy-driven demand response in China. IEEE Access, 5, 22892-22901.
[8]《台灣電力股份有限公司儲能系統併聯技術要點》, 台灣電力公司台灣電力公司,
https://www.taipower.com.tw/upload/5504/2020031114224619737.pdf.
[9] 再生能源憑證制度及綠電交易 , 經濟部標準檢驗局 國家再生能源
憑證中心 ,https://www.trec.org.tw/activity/2021-09-10%2011-54-37/get/j0kUZgUt7EsgNpZTqmKW?v=1631246527.
[10] 自願性再生能源憑證實施 ,國家再生能源憑證中心 ,
https://www.trec.org.tw/documents/25/4ab37d6d-791e-4c94-b08d-917b260c7586.
[11] ZHU Weijie, SHI Youjie, LEI Bo. Functional safety analysis and design of BMS for lithium-ion battery energy storage system. Energy Storage Science and Technology, 2020, 9(1): 271-278.
[12] 王振文 ,劉文華 . 鈉硫電池儲能係統在電力系統中的應用 .中國科
技信息 ,2006(13):41-44,46.
[13] 俞斌 ,桑丙玉 ,劉歡 ,等 .智能微網中鉛酸電池儲能係統控制策略 .電
網與清潔能源 ,2013(12):119-125.
[14] Sun, Y. K., et al. Recent progress in the electrolytes for interfacial stabilization of high-voltage lithium-ion batteries. Chemistry of Materials, 2012, 24(4), 680-691.
[15] Li, X., et al. Recent progress in iron-based positive electrode materials for rechargeable lithium batteries. Green Energy & Environment, 2016, 1(3), 218-245.
[16] Glover, J. D., Sarma, M. S., & Overbye, T. J. Power System Analysis and Design. Cengage Learning, 2017.
[17] M. Barzegaran, T. Dragicevic, and J. Pou, "Fault detection, isolation, and recovery in power electronics-based power systems: a review," IEEE Transactions on Power Electronics,vol. 35, no. 2, pp. 1711-1736, Feb. 2020.
[18] K. M. Liu, S. W. Chang, J. Y. Lu, T. H. Liu, S. J. Huang, and H. L. Jou, "Distributed fault-tolerant control of modular multilevel converter for large-scale energy storage systems," IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 1879-1892, Apr. 2015.
[19] M. S. Sachdev and B. R. Kiran, "Voltage stability assessment using voltage stability indices and voltage variation rate," in Power, Control, Signals and Instrumentation Engineering, Springer, 2020, pp. 1-11.
[20] S. Bhowmick, B. H. Chowdhury, and S. P. Chowdhury, "Voltage flicker compensation in distribution networks using a fuzzy logic controller based custom power device," International Journal of Electrical Power & Energy Systems, vol. 75, pp. 329-338, Feb. 2016.
[21] Czarnecki, L. S., & Arrillaga, J. (Eds.). Power System Harmonic Analysis. Wiley, 2001.
[22] 台灣電力股份有限公司電壓閃爍管制要點 ,台灣電力公司 ,
http://smartgrid.swelecpe.com/pdf/code/%E5%8F%B0%E7%81%A3%E9%9B%BB%E5%8A%9B%E8%82%A1%E4%BB%BD%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E9%9B%BB%E5%A3%93%E9%96%83%E7%88%8D%E7%AE%A1%E5%88%B6%E8%A6%81%E9%BB%9E.pdf
[23] IEEE Std 519, IEEE,
https://edisciplinas.usp.br/pluginfile.php/1589263/mod_resource/content/1/IEE%20Std%20519-2014.pdf

QR CODE