簡易檢索 / 詳目顯示

研究生: 李雅婷
Ya-Ting Li
論文名稱: 5G 置信度傳播位元翻轉平行化極化解碼器設計與實現
The Design and Implementation of 5G Parallelization Polar Decoder with Belief Propagation and Bit-Flip
指導教授: 王煥宗
Huan-Chun Wang
口試委員: 王瑞堂
Jui-Tang Wang
林敬舜
ChingShun Lin
王煥宗
Huan-Chun Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 61
中文關鍵詞: 極化碼解碼器置信度傳播解碼置信度傳播位元翻轉解碼一致化因子圖
外文關鍵詞: Polar Code Decoder, Belief Propagation Decoder, BP Bit Flip Decoder, Uniform Factor Graph
相關次數: 點閱:342下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出應用於5G的極化碼(Polar Code)解碼器,使用置信度傳播演算法,並專注於改善極化碼置信度傳播位元翻轉解碼的高疊代次數帶來的高延遲。超大型積體電路(VLSI)設計與實現,在硬體架構上以降低複雜度、設計不同碼長,以及降低延遲為主要目標,以此提出平行化的流程與架構,能夠以倍數縮減冗長的位元翻轉流程,架構中藉由一致化因子圖(uniform factor graph)來降低設計複雜度。 本論文軟體使用的模擬環境為MATLAB,使用的FPGA模擬環境為Virtex-7 VC707,而設計電路之實現則是使用TSMC 40nm CMOS製程技術進行實作,並且根據[11]的數據為參考。最後將完成的各項數據表現與比對以及未來展望作為本文的結論。


This thesis proposes the design and implementation of Polar Code decoder applied to 5G, with Belief Propagation algorithm, and focuses on improving the high latency caused by the high iteration times of the Polar Code Belief Propagation bit flipping decoding. In the hardware architecture, the purpose of the design is configurable code length 、reduce complexity, and reduce delays. we propose a flow and a structure of parallelized Bit Flip Decoder. It is capable of using a lot fewer iteration while in the Bit Flip part of flow.In the bit flipping process, by uniform factor graph is used in the architecture to reduce design complexity.
The software simulation environment of this thesis is MATLAB, the FPGA verification environment is Virtex-7 VC707, and the realization of the design circuit is implemented by TSMC 40nm CMOS process technology. And according to the data in [11] as a reference .Finally, the completed data performance and comparison and future prospects are the conclusions of this article.

圖目錄 v 表目錄 vii 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 論文架構 2 第二章 極化碼 Polar Code 3 2.1 極化碼 Polar Code介紹 3 2.1.1通道極化 3 2.1.2通道組合 3 2.1.3通道分裂 7 2.2 通道極化判定 8 2.2.1 Polar Weight 9 2.3 Polar Code編碼方式介紹 11 2.3.1 CRC-Aided 12 2.4 Belief Propagation decoder解碼 13 2.4.1 Belief Propagation Decoder解碼方式介紹 13 2.4.2因子圖選擇 15 2.4.3一致化因子圖 15 2.4.4因子圖置換 16 2.4.5 Stage 置換與 bit-index 置換的關係 18 2.4.6 Uniform factor graph等效性驗證 20 2.5 平行化置信度傳播位元翻轉解碼 21 2.5.1 Critical Set (CS) 22 2.5.2建構 CS-ω 22 2.5.3基於 CS-ω的位元翻轉解碼 23 2.5.4平行化置信度傳播位元翻轉流程 26 第三章 演算法的程式模擬與驗證 27 3.1 環境設定 26 3.2 程式解碼流程 28 3.2.1 BP Decoder 29 3.3 模擬效能 30 第四章 解碼器硬體架構與FPGA模擬 33 4.1 電路方塊圖 34 4.1.1 BP Decoder 34 4.1.2 LLR Caculator 35 4.1.3 Bit-Flip Process 37 4.1.4 CRC Caculator 38 4.2 FPGA模擬環境 38 4.3 FPGA解碼效能表現 40 4.3.1 BP Decoder與 BP Bit Flip效能表現 40 4.3.2原始架構與平行化的疊代次數比較 42 第五章 晶片設計流程與參數選擇 45 5.1 晶片設計流程 45 5.2 I/O Pad選擇 46 5.3 設計結果與文獻比較 48 第六章 結論與未來展望 51 參考文獻 52

[1] E. Arikan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels," in IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051-3073, July 2009, doi: 10.1109/TIT.2009.2021379.
[2] J. Dai, K. Niu, Z. Si, C. Dong and J. Lin, "Does Gaussian Approximation Work Well for the Long-Length Polar Code Construction?," in IEEE Access, vol. 5, pp.
7950-7963, 2017, doi: 10.1109/ACCESS.2017.2692241.
[3] I. Tal and A. Vardy, "List Decoding of Polar Codes," in IEEE Transactions on Information Theory, vol. 61, no. 5, pp. 2213-2226, May 2015.
[4] A. Balatsoukas-Stimming, M. B. Parizi and A. Burg, "LLR-Based Successive Cancellation List Decoding of Polar Codes," in IEEE Transactions on Signal Processing, vol. 63, no. 19, pp. 5165-5179, Oct.1, 2015.
[5] Q. Zhang, A. Liu, X. Pan and K. Pan, "CRC Code Design for List Decoding of Polar Codes," in IEEE Communications Letters, vol. 21, no. 6, pp. 1229-1232, June 2017.
[6] E. Arikan, "A performance comparison of polar codes and Reed-Muller codes," in IEEE Communications Letters, vol. 12, no. 6, pp. 447-449, June 2008.
[7] J. Guo, M. Qin, A. Guillén i Fàbregas and P. H. Siegel, "Enhanced belief propagation decoding of polar codes through concatenation," 2014 IEEE International Symposium on Information Theory, Honolulu, HI, 2014, pp. 2987-2991.
[8] U. U. Fayyaz and J. R. Barry, "A low-complexity soft-output decoder for polar codes," 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, 2013, pp. 2692-2697.
[9] N. Doan, S. A. Hashemi, M. Mondelli and W. J. Gross, "On the Decoding of Polar Codes on Permuted Factor Graphs," 2018 IEEE Global Communications Conference(GLOBECOM),2018, pp. 1-6.
[10] Y. Shen, W. Song, Y. Ren, H. Ji, X. You and C. Zhang, "Enhanced Belief Propagation Decoder for 5G Polar Codes With Bit-Flipping," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 5, pp. 901-905, May 2020.
[11] Y. Yu, Z. Pan, N. Liu and X. You, "Belief Propagation Bit-Flip Decoder for Polar Codes," in IEEE Access, vol. 7, pp. 10937-10946, 2019.
[12] H. Zhang et al., "Parity-Check Polar Coding for 5G and Beyond," 2018 IEEE International Conference on Communications (ICC), 2018, pp. 1-7.
[13] Y. Ren, W. Xu, Z. Zhang, X. You and C. Zhang, "Efficient Belief Propagation List Decoding of Polar Codes," 2019 IEEE 13th International Conference on ASIC (ASICON), 2019, pp. 1-4.
[14] 3GPP R1-1713469 “Evaluation of the sequence for Polar codes,” Qualcomm Inc. Aug. 2017.
[15] Y. S. Park, Y. Tao, S. Sun, and Z. Zhang, “A 4.68gb/s belief propagation polar decoder with bit-splitting register file,” in 2014 Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2014, pp. 1–2.
[16] G. He et al., "Beta-Expansion: A Theoretical Framework for Fast and Recursive Construction of Polar Codes," GLOBECOM 2017 - 2017 IEEE Global Communications Conference, 2017, pp. 1-6.

無法下載圖示 全文公開日期 2024/10/13 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE