簡易檢索 / 詳目顯示

研究生: 李偲齊
Ssu-Chi Li
論文名稱: 應用多道次雷射加工製程於鎂鋁合金動靜脈廔管支架加工之研究
A study of magnesium aluminum alloy arteriovenous fistula stent fabrication by multi-passes laser process
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 洪嘉宏
Chia-Hung Hung
何羽健
Yu-Chien Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 91
中文關鍵詞: 動靜脈廔管支架鎂鋁合金支架奈秒脈衝雷射雷射切割品質分析
外文關鍵詞: arteriovenous fistula stent, magnesium aluminum alloy stent, nanosecond pulsed laser, laser cutting quality analysis
相關次數: 點閱:168下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

建立自體動靜脈廔管的過程中,可藉由置入動靜脈廔管支架縮短靜脈成熟化所需時間並提高成功機率,而生物可降解鎂合金具有良好的生物相容性和機械性能,適合作為動靜脈廔管支架的材料。生物可降解金屬支架大多使用短脈衝雷射或超短脈衝雷射進行加工,通常藉由使用短脈衝雷射或超短脈衝雷射獲得更佳的切割邊緣品質。
本研究以奈秒脈衝雷射及掃瞄振鏡進行鎂鋁合金動靜脈廔管支架加工實驗,利用多道次雷射加工製程改善支架的邊緣品質和表面形貌。加工支架結構前,先進行多道次雷射加工實驗,並藉由固定平均功率和脈衝距離,使用不同的脈衝能量及加工次數切割鎂鋁合金板材
,探討其對切割品質的影響,得出最佳的雷射加工參數並應用於支架結構加工。為了準確分析雷射切割品質,提出一套完整的切割品質分析方式,使用掃描式電子顯微鏡、雷射掃描共軛焦顯微鏡等多種檢測分析儀器對熔渣量、切口大小及切面品質三個方面進行分析。實驗結果顯示藉由最佳的雷射加工參數(平均功率18 W、脈衝寬度 30 nanoseconds、脈衝頻率85 kHz、切割速度85 mm/s及脈衝距離0.001 mm)及加工次數20次可以有效減少熔渣量及改善切面表面粗糙度,並且提高支架結構尺寸精度。


During the construction of arteriovenous fistula, the time required to mature is shortened and the success rate is increased by the placement of arteriovenous fistula stent. The biodegradable magnesium alloy is suitable to be used as the material of arteriovenous fistula stent due to good biocompatibility and mechanical property. Most biodegradable metal stents are fabricated by short pulse laser or ultrashort pulse laser, which are usually used to obtain better cutting edge quality.
In this study, a nanosecond pulsed laser and a galvano-mirror scanner were used for machining experiment of arteriovenous fistula stent, and the edge quality and surface topography of stent structure were improved by multi-pass laser cutting process. A multi-pass laser cutting experiment was carried out on first. By fixing the average power and pulse distance, different pulse energy and processing times were used to cut the magnesium aluminum alloy sheet. The influence of the laser processing parameters on cutting quality was discussed, and the optimal laser processing parameters were obtained and applied to the fabrication of the stent structure. In order to accurately analyze the laser cutting quality, a complete cutting quality analysis method was proposed. Scanning electron microscope, laser scanning confocal microscope and other analysis instruments were used to analyze the dross quantity, kerf size and edge quality. The experimental results show that the laser processing parameters (average power 18W, pulse width 30nanoseconds, pulse repetition rate 85kHz, cutting speed 85mm/s and pulse distance 0.001mm) and 20 processing times can effectively reduce the quantity of dross, improve the surface roughness of the section and promote the size precision of the stent structure.

摘要 II Abstract IV 誌謝 VI 第一章、 緒論 1 1.1. 研究背景 1 1.2. 研究動機與目的 2 第二章、 文獻回顧 4 2.1. 鎂合金生物可降解支架 4 2.1.1. 鎂合金材料介紹 5 2.2. 雷射加工技術文獻回顧 6 2.2.1. 鎂合金雷射加工技術文獻 6 2.2.2. 其他金屬雷射加工技術文獻 11 第三章、 研究方法 14 3.1. 實驗設計及流程規劃 14 3.2. 多道次雷射加工實驗 16 3.2.1. 雷射加工前置工作 16 3.2.2. 雷射加工參數訂定 19 3.2.3. 樣本準備及加工 25 3.2.4. 切割品質量測及分析 26 3.2.5. 雷射加工參數選定 34 3.3. 鎂鋁合金動靜脈廔管支架加工 35 3.3.1. 支架模型繪製 35 3.3.2. 雷射加工路徑設計 36 3.3.3. 雷射加工路徑規劃 38 3.3.4. 支架結構加工 39 3.4. 振鏡掃描光纖雷射系統 40 3.4.1. 振鏡掃描雷射源 41 3.4.2. 精密三軸移動平台及輔助氣體保護裝置 44 3.4.3. MarkingMate雷射控制軟體 44 3.5. 實驗樣本處理 45 3.5.1. 熱鑲埋 45 3.5.2. 研磨 46 3.6. 實驗設備與儀器介紹 47 3.6.1. 光學顯微鏡(Optical Microscope, OM) 47 3.6.2. 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 48 3.6.3. 雷射掃描共軛焦顯微鏡(Laser Scanning Confocal Microscope, LSCM) 49 3.6.4. 金相鑲埋機 50 3.6.5. 研磨拋光機 50 3.6.6. 電動刻磨機 51 第四章、 實驗結果與討論 52 4.1. 多道次雷射加工實驗結果 52 4.1.1. 雷射聚焦位置測量 52 4.1.2. 雷射相關參數分析 56 4.1.3. 切割品質測量結果 58 4.1.4. 雷射加工參數選定 79 4.2. 鎂鋁合金動靜脈廔管支架結構加工實驗結果 81 4.2.1. 支架結構加工結果 81 4.2.2. 支架結構尺寸誤差 83 第五章、 結論與未來展望 85 5.1. 結論 85 5.1.1. 雷射加工參數對切割品質之影響 85 5.1.2. 多道次雷射加工製程 85 5.1.3. 雷射切割品質分析方式 86 5.2. 未來展望 86 參考文獻 88

[1] 臺灣洗腎率冠全球!每年洗腎人口逾9萬人,Available from: https://www.advisers.com.tw/?p=6898.
[2] 慢性腎臟病是什麼?一次了解慢性腎臟病症狀、治療以及如何預防-康健知識庫,Available from:https://kb.commonhealth.com.tw/library/178.html#data-4-collapse.
[3] 認識慢性腎臟病,Available from:http://web.csh.org.tw/web/cshmagazine/?p=540.
[4] 腹膜透析的簡介,Available from:http://web.csh.org.tw/web/cshmagazine/?p=528.
[5] Sequeira, A., M. Naljayan, and T.J. Vachharajani, Vascular Access Guidelines: Summary, Rationale, and Controversies. Techniques in Vascular and Interventional Radiology, 2017. 20(1): p. 2-8.
[6] Lok, C.E. and R. Foley, Vascular Access Morbidity and Mortality: Trends of the Last Decade. Clinical Journal of the American Society of Nephrology, 2013. 8(7): p. 1213-1219.
[7] Dixon, B., Why don't Fistulas Mature? Kidney International, 2006. 70(8): p. 1413-1422.
[8] Papachristou, E. and R.I. Vazquez-Padron, From Basic Anatomic Configuration to Maturation Success. Kidney International, 2012. 81(8): p. 724-726.
[9] Moravej, M. and D. Mantovani, Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities. International Journal of Molecular Sciences, 2011. 12(7): p. 4250-4270.
[10] Hanawa, T., Materials for Metallic Stents. Journal of Artificial Organs, 2009. 12(2): p. 73-79.
[11] Chen, Y., et al., Recent Advances on the Development of Magnesium Alloys for Biodegradable Implants. Acta Biomaterialia, 2014. 10(11): p. 4561-4573.
[12] Chen, J., et al., Mechanical Properties of Magnesium Alloys for Medical Application: A Review. Journal of the Mechanical Behavior of Biomedical Materials, 2018. 87: p. 68-79.
[13] Pan, C., et al., Immobilization of Bioactive Complex on the Surface of Magnesium Alloy Stent Material to Simultaneously Improve Anticorrosion, Hemocompatibility and Antibacterial Activities. Colloids and Surfaces B: Biointerfaces, 2021. 199: p. 111541.
[14] 徐顥澄,「可吸收鎂合金動靜脈廔管支架開發」,碩士論文,國立臺灣科技大學,機械工程系,2020。
[15] Kathuria, Y., Laser Microprocessing of Metallic Stent for Medical Therapy. Journal of Materials Processing Technology, 2005. 170(3): p. 545-550.
[16] Kathuria, Y.P. Laser Microfabrication of Biocompatible Metallic Stent for Medical Therapy. in European Conference on Biomedical Optics. 2003. Optical Society of America.
[17] Demir, A.G., B. Previtali, and C.A. Biffi, Fibre Laser Cutting and Chemical Etching of AZ31 for Manufacturing Biodegradable Stents. Advances in Materials Science and Engineering, 2013. 2013.
[18] Catalano, G., et al., Prototyping of Biodegradable Flat Stents in Pure Zinc by Laser Microcutting and Chemical Etching. Journal of Micromechanics and Microengineering, 2018. 28(9): p. 095016.
[19] Gökhan Demir, A. and B. Previtali, Comparative Study of CW, Nanosecond-and Femtosecond-pulsed Laser Microcutting of AZ31 Magnesium Alloy Stents. Biointerphases, 2014. 9(2): p. 029004.
[20] Leone, C., S. Genna, and V. Tagliaferri, Fibre Laser Cutting of CFRP Thin Sheets by Multi-passes Scan Technique. Optics and Lasers in Engineering, 2014. 53: p. 43-50.
[21] Staiger, M.P., et al., Magnesium and Its Alloys as Orthopedic Biomaterials: A Review. Biomaterials, 2006. 27(9): p. 1728-1734.
[22] Farè, S., et al., Evaluation of Material Properties and Design Requirements for Biodegradable Magnesium Stents. Matéria (Rio de Janeiro), 2010. 15: p. 96-103.
[23] Soares, J.S. and J.E. Moore, Biomechanical Challenges to Polymeric Biodegradable Stents. Annals of Biomedical Engineering, 2016. 44(2): p. 560-579.
[24] Pierson, D., et al., A Simplified in Vivo Approach for Evaluating the Bioabsorbable Behavior of Candidate Stent Materials. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012. 100(1): p. 58-67.
[25] Toong, D.W.Y., et al., Bioresorbable Metals in Cardiovascular Stents: Material Insights and Progress. Materialia, 2020. 12: p. 100727.
[26] Xu, T., et al., Overview of Advancement and Development Trend on Magnesium Alloy. Journal of Magnesium and Alloys, 2019. 7(3): p. 536-544.
[27] Yang, Y., et al., Research Advances in Magnesium and Magnesium Alloys Worldwide in 2020. Journal of Magnesium and Alloys, 2021. 9(3): p. 705-747.
[28] Witte, F., et al., Degradable Biomaterials Based on Magnesium Corrosion. Current Opinion in Solid State and Materials Science, 2008. 12(5-6): p. 63-72.
[29] Xin, Y., T. Hu, and P. Chu, In Vitro Studies of Biomedical Magnesium Alloys in a Simulated Physiological Environment: A Review. Acta biomaterialia, 2011. 7(4): p. 1452-1459.
[30] Demir, A.G. and B. Previtali, Dross-free Submerged Laser Cutting of AZ31 Mg alloy for Biodegradable Stents. Journal of Laser Applications, 2016. 28(3): p. 032001.
[31] Kamlage, G., et al., Deep Drilling of Metals by Femtosecond Laser Pulses. Applied Physics A, 2003. 77(2): p. 307-310.
[32] 洪嘉宏,「應用飛秒雷射移除加工製程於鎳鈦膽管支架加工之研究」,碩士論文,國立臺灣科技大學,機械工程系,2013。
[33] Thawari, G., et al., Influence of Process Parameters during Pulsed Nd: YAG Laser Cutting of Nickel-base Superalloys. Journal of Materials Processing Technology, 2005. 170(1-2): p. 229-239.
[34] 盧文輝,「多晶鑽石材料之雷射切割與修整製程研究」,碩士論文,國立臺灣科技大學,機械工程系,2016。
[35] Smith, G.N., K. Kalli, and K. Sugden, Advances in Femtosecond Micromachining and Inscription of Micro and Nano Photonic Devices. Frontiers in Guided Wave Optics and Optoelectronics, 2010. 674.
[36] 許育豪,「飛秒雷射製作金屬玻璃微奈米轉印精密模具應用分析」,碩士論文,國立臺灣科技大學,機械工程系,2010。
[37] Kleine, K., B. Whitney, and K. Watkins. Use of Fiber Lasers for Micro Cutting Applications in the Medical Device Industry. in International Congress on Applications of Lasers & Electro-Optics. 2002. Laser Institute of America.
[38] Misawa, H. and S. Juodkazis, 3D Laser Microfabrication: Principles and Applications. 2006: John Wiley & Sons.
[39] Zhou, Y., et al., Computer Texture Mapping for Laser Texturing of Injection Mold. Advances in Mechanical Engineering, 2014. 6: p. 681563.
[40] 張國順,現代雷射製造技術,新文京開發出版股份有限公司,2008。
[41] Mannion, P., et al. Ablation Thresholds in Ultrafast Laser Micromachining of Common Metals in Air. in Opto-Ireland 2002: Optics and Photonics Technologies and Applications. 2003. SPIE.

無法下載圖示 全文公開日期 2028/02/06 (校內網路)
全文公開日期 2028/02/06 (校外網路)
全文公開日期 2028/02/06 (國家圖書館:臺灣博碩士論文系統)
QR CODE