簡易檢索 / 詳目顯示

研究生: 李清宜
Ching-Yi Li
論文名稱: 新型含苯并咪唑側基之不對稱型聚醯亞胺的合成及在高溫型質子交換膜燃料電池之應用
Synthesis of Asymmetric Polyimides Containing Benzimidazole Substituent and their Applications on High Temperature Proton Exchange Membrane Fuel Cell
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 游進陽
Chin-Yang Yu
王英靖
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 69
中文關鍵詞: 不對稱型聚醯亞胺苯并咪唑高溫型質子交換膜燃料電池
外文關鍵詞: Asymmetric, Polyimides, Benzimidazole, High Temperature Proton Exchange Membrane Fuel C
相關次數: 點閱:249下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究合成一個含苯并咪唑(benzimidazole)巨大側基及具柔軟醚鏈段的不對稱新型二胺2-benzimidazolyl-4,4’-oxydianiline(6),並將此新型二胺與常見的三種二酸酐以兩步法合成新型聚醯亞胺系列(1Ben系列)。剛硬的benzimidazole側基讓新型聚醯亞胺具有極佳的熱穩定性,其Tg 在277~342 ℃之間,所測得的Td5%介在528~573 ℃, Td10%介在548~590 ℃,在800 ℃之熱殘餘重介在46~66 %,熱膨脹係數(CTE)介於28~35 μm/m℃之間。因其具有benzimidazole側基,故可將此新型聚醯亞胺應用於高溫型質子交換薄膜燃料電池。如此一來,新型聚醯亞胺有機會替代合成不易的PBI。 1Ben系列之聚醯亞胺皆擁有良好的氧化安定性,經192小時的Fenton’s test試驗中皆保持92 %以上的殘留重量百分率。1Ben系列在160 ℃時質子傳導率可達到1.7×10-2~4.3×10-2 S/cm,電池輸出功率密度最高可達到213~566 mW/cm2,開路電壓為0.88~0.92 V, 皆為質子交換燃料電池所可使用範圍。其中1Ben-6FDA能在較低的磷酸摻雜量下,得到最大電池輸出功率密度566 mW/cm2,比市售m-PBI的對照組(423 mW/cm2)高出34 %。


A novel asymmetric diamine, 2-benzimidazolyl-4,4’-oxydianiline(6), containing a bulky benzimidazole side group and flexible ether linkage was synthesized successfully. And a series of novel polyimides (1Ben series) were prepared based on this novel diamine and the three kinds of dianhydrides by two steps method. Due to the rigid benzimidazole group, the novel polyimides exhibited excellent thermal stabilities. The glass transition temperatures (Tg) of the polyimides were between 277~342 ℃. The temperatures of 5 % weight loss (Td5%) were between 528~573 ℃. The temperatures of 10 % weight loss (Td10%) were between 548~590 ℃. The residual weight kept 46~66 % at 800 ℃. The coefficient of thermal expansion (CTE) of the polyimides series were between 28~35 μm/m℃. Because of the benzimidazole side group existent, the novel polyimides series could be applied to high temperature proton exchange membrane fuel cell. So the novel polyimides could be alternated PBIs which were difficult to synthesize. All the novel polyimides had outstanding oxidation stability. After Fenton’s test testing for 192 hours, the novel poyimides series kept above 92 % residual weight. The proton conductivities of the novel polyimides could reach to 1.7×10-2~4.3×10-2 S/cm. The highest power densities were 213~566 mW/cm2. The open circuit voltages were 0.88~0.92 V. So these fuel cell properties could be applied to high temperature proton exchange fuel cell. Especially, although 1Ben-6FDA had lower acid content, the power density of 1Ben-6FDA (566 mW/cm2) could exhibit 34 % higher than commercial m-PBI (423 mW/cm2).

1、緒論 1 1.1前言 1 1.2文獻回顧 4 1.2.1質子交換膜分類與介紹 8 1.2.2 高性能高分子聚醯亞胺的簡介 21 1.2.3聚醯亞胺的在高溫型質子交換膜應用與發展 24 2、實驗部分 30 2.1 實驗藥品 30 2.2 實驗儀器 31 2.3單體合成 32 2.4 聚醯亞胺1Ben系列之合成以及薄膜製備 35 3、結果與討論 36 3.1 單體的合成(Monomers synthesis) 36 3.2 聚醯亞胺之合成(Polyimides synthesis) 44 3.3 聚醯亞胺之溶解度(Solubility) 46 3.4聚醯亞胺之紅外光光譜(FT-IR) 48 3.5 聚醯亞胺之熱性質 49 3.6 聚醯亞胺之磷酸摻雜程度(Acid doping level) 52 3.7 聚醯亞胺之機械特性(Mechanical properties) 56 3.8 聚醯亞胺之安定性(Stability) 58 3.8.1 氧化安定性(Stability of oxidation) 58 3.8.2 尺寸安定性(Stability of dimension) 60 3.9質子傳導率(Proton conductivity) 61 3.10 燃料電池性質(Fuel cell properties) 64 4、結論 66 參考文獻 67

(1) Wang, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C. Appl. Energy 2011, 88, 981.
(2) 衣寶廉(編著);黃朝榮、林修正(校訂) 燃料電池應用 五南圖書出版 2007,6.
(3) Zhang, H.; Shen, P. K. Chem. Rev. 2012, 112, 2780.
(4) Li, Q.; Jensen, J. O.; Savinell, R. F.; Bjerrum, N. J. Prog. Polym. Sci. 2009, 34, 449.
(5) Steck, A. E.; Stone, C.; U. S. Patent 3 179 664 1997.
(6) Ng, F.; Péron, J.; Jones, D. J.; Rozière, J. J. Polym. Sci. Polym. Chem. 2011, 49, 2107.
(7) Sheng, L.; Xu, H.; Guo, X.; Fang, J.; Fang, L.; Yin, J. J. Power Sources 2011, 196, 3039.
(8) Wang, Y.; Chung, T.; Gruender, M. J. Membr. Sci. 2012, 415-416, 486.
(9) Komber, H.; Chakraborty, S.; Voit, B.; Banerjee, S. Polymer 2012, 53, 1624.
(10) Mabrouk, W.; Ogier, L.; Vidal, S.; Sollogoub, C.; Matoussi, F.; Dachraoui, M.; Fauvarque, J. F. Fuel Cells 2012, 12, 179.
(11) Siracusano, S.; Baglio, V.; Lufrano, F.; Staiti, P.; Aricò, A. S. J. Membr. Sci. 2013, 448, 209.
(12) De Bonis, C.; D'Epifanio, A.; Di Vona, M. L.; Mecheri, B.; Traversa, E.; Trombetta, M.; Licoccia, S. J. Polym. Sci. Polym. Chem. 2010, 48, 2178.
(13) Kim, T. W.; Sahimi, M.; Tsotsis, T. T. Ind. Eng. Chem. Res. 2009, 48, 9504.
(14) Knauth, P.; Pasquini, L.; Maranesi, B.; Pelzer, K.; Polini, R.; Di Vona, M. L. Fuel Cells 2013, 13, 79.
(15) Manea, C.; Mulder, M. J. Membr. Sci. 2002, 206, 443.
(16) Adanur, S.; Zheng, H. J. Fuel Cell Sci. Technol. 2013, 10, 4.
(17) Li, J.; Zhang, Y.; Wang, L. J. Solid State Electrochem. 2013, 1, 9.
(18) Pandey, R. P.; Shahi, V. K. J. Mater. Chem. 2013, 1, 14375.
(19) Peighambardoust, S. J.; Rowshanzamir, S.; Amjadi, M. Int. J. Hydrol. Eng. 2010, 35, 9349.
(20) Kim, S. K.; Kim, T. H.; Jung, J. W.; Lee, J. C. Polymer 2009, 50, 3495.
(21) Tan, N.; Chen, Y.; Xiao, G.; Yan, D. J. Membr. Sci.2010, 356, 70.
(22) Unterlass, M. M.; Kopetzki, D.; Antonietti, M.; Weber, J. Polym. Chem. 2011, 2, 1744.
(23) Shao, Y.; Yin, G.; Gao, Y. J. Power Sources 2007, 171, 558.
(24) Wainright, J. S.; Wang, J. T.; Weng, D.; Savinell, R. F.; Litt, M. J. Electrochem. Soc. 1995, 142, 1121.
(25) Schechter, A.; Savinell, R. F. Solid State Ion. 2002, 147, 181.
(26) Hughes, C. E.; Haufe, S.; Angerstein, B.; Kalim, R.; Mähr, U.; Reiche, A.; Baldus, M. J. Phys. Chem. B 2004, 108, 13626.
(27) Bouchet, R.; Siebert, E. Solid State Ion. 1999, 118, 287.
(28) Ma, Y. L.; Wainright, J. S.; Litt, M. H.; Savinell, R. F. J. Electrochem. Soc. 2004, 151, 8.
(29) Vogel, H.; Marvel, C. S. J. Polym. Sci. 1961, 50, 511.
(30) Iwakura, Y. U.; Uno, K.; Imai, Y. J. Polym. Sci. Polym. Chem. 1964, 2, 2605.
(31) Yoda, N.; Kurihara, M. J. Polym. Sci. Macromol. Rev. 1971, 5, 109.
(32) Uno, K.; Niume, K.; Iwata, Y.; Toda, F.; Iwakura, Y. J. Polym. Sci. Polym. Chem. 1977, 15, 1309.
(33) Serad, G. A. J. Polym. Sci. Polym. Chem. 1996, 34, 1123.
(34) Li, Q.; Savinell, R. F.; Bjerrum, N. J. Prog. Polym. Sci. 2009, 34, 449.
(35) Kim, T. H.; Lim, T. W.; Lee, J. C. J. Membr. Sci. 2008, 323, 362.
(36) Xiao, L.; Zhang, H.; Scanlon, E.; Ramanathan, L. S.; Choe, E. W.; Rogers, D.; Apple, T.; Benicewicz, B. C. Chem. Mater. 2005, 17, 5328.
(37) Li, X.; Chen, X.; Benicewicz, B. C. J. Power Sources 2013, 243, 796.
(38) Pu, H.; Liu, G. Polym. Int. 2005, 54, 175.
(39) Chuang, S. W.; Hsu, S. L. J. Polym. Sci. Polym. Chem. 2006, 44, 4508.
(40) Shen, C. H.; Hsu, S. L.; Bulycheva, E.; Belomoina, N. J. Mater. Chem. 2012, 22, 19269.
(41) Pangon, A.; Chirachanchai, S. Polymer 2012, 53, 3878.
(42) Wang, J.; Zheng, J.; Zhao, Z.; Zhang, S. J. Mater. Chem. 2012, 22, 22706.
(43) Dhara, M. G.; Banerjee, S. Prog. Polym. Sci. 2010, 35, 1022.
(44) Ding, M. Prog. Polym. Sci. 2007, 32, 623.
(45) Jiang, L. Y.; Wang, Y.; Chung, T. S.; Qiao, X. Y.; Lai, J. Y. Prog. Polym. Sci. 2009, 34, 1135.
(46) Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Prog. Polym. Sci. 2012, 37, 907.
(47) Bogert, M. T.; Renshaw, R. R. J. Am. Chem. Soc. 1908, 30, 1135.
(48) Edwards, W. M.; Robison, I. M. U. S. Patent 2 710 853 1955.
(49) Endrey, A. L. U. S. Patent 3 179 630 1965.
(50) Edward, W. M. U. S. Patent 3 179 614 1965.
(51) Vinogradova, S. V.; Vygodskii, Y. S.; Korshak, V. V. Polym. Sci. U.S.S.R. 1970, 12, 2254.
(52) Hasegawa, M.; Horie, K. Prog. Polym. Sci. 2001, 26, 259.
(53) Malinge, J.; Garrapon, J.; Sillion, B. Brit. Polym, J. 1988, 20, 431.
(54) Farrissey, W. J.; Andrew, P. S. U. S. Patent 3 787 367 1974.
(55) Critchley, J. P. Prog. Polym. Sci. 1970, 2, 51.
(56) Vinogradova, S. V.; Korshak, V. V.; Vygodskii, Y. S. Polym. Sci. U.S.S.R. 1966, 8, 888.
(57) Harris, F. W.; Feld, W. A.; Lanier, L. H. Appl. Polym. Sympos. 1975, 26, 421.
(58) Liou, G. S.; Hsiao, S. H.; Ishida, M.; Kakimoto, M.; Imai, Y. J. Polym. Sci. Polym. Chem. 2002, 40, 2810.
(59) Wang, Z. Y.; Qi, Y. Macromolecules 1994, 27, 625.
(60) Imai, Y. High Perform. Polym. 1995, 7, 337.
(61) Korshak, V. V.; Rusanov, A. L.; Katsarava, R. D.; Niyazi, F. F. Polym. Sci. U.S.S.R. 1973, 15, 3000.
(62) Yang, C. P.; Hsiao, S. H.; Chen, K. H. Polymer 2002, 43, 5095.
(63) Yang, C. P.; Hsiao, S. H.; Wu, K. L. Polymer 2003, 44, 7067.
(64) Barsema, J. N.; Kapantaidakis, G. C.; Koops, G. H.; Wessling, M. J. Membr. Sci. 2003, 216, 195.
(65) Yanagishita, H.; Maejima, C.; Kitamoto, D.; Nakane, T. J. Membr. Sci. 1994, 86, 231.
(66) Somboonsub, B.; Thongyai, S.; Scola, D. A.; Sotzing, G. A.; Praserthdam, P. Synth. Mater. 2012, 162, 941.
(67) Xu, H.; Xu, F.; Zhang, G. M.; Ma, R.; Guo, X. X.; Fang, J. H. J. Membr. Sci. 2012, 46, 498.
(68) Pu, H. T.; Liu, Q. Z.; Yang. Z. L. J. Eur. Polym. 2005, 41, 2505.
(69) Berrada, M.; Carriere, F.; Abboud, Y.; Abourriche, A.; Benamara, A.; Lajrhed, N.; Kabbaj, M.; Berrada, M. J. Mater. Chem. 2002, 12, 3551.
(70) Liu, J.; Zhang, Q.; Xia, Q.; Dong, J.; Xu, Q. Polym. Degrad. Stab. 2012, 97, 987.
(71) Choi, H.; Chung, I. S.; Hong, K.; Park, C. E.; Kim, S. Y. Polymer 2008, 49, 2644.
(72) Jang, W.; Choi, S.; Lee, S.; Park, S.; Seo, J.; Shul, Y.; Han, H. J. Electrochem. Soc. 2007, 5, 17.
(73) Yang, C. P.; Su, Y. Y. Polymer 2003, 44,5698.

無法下載圖示 全文公開日期 2019/01/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE