簡易檢索 / 詳目顯示

研究生: 林書安
Shu-An Lin
論文名稱: Ga1-xInxSe (0≦x≦0.5) 之晶體成長與特性研究
Growth and characterization of Ga1-xInxSe (0≦x≦0.5) layered single crystals
指導教授: 何清華
Ching-Hwa Ho
口試委員: 何清華
Ching-Hwa Ho
李奎毅
Kuei-Yi Lee
周宏隆
Hung-Lung Chou
簡紋濱
Wen-Bin Jian
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 83
中文關鍵詞: 硒化鎵硒化銦光激發螢光光譜熱調制反射光譜表面光電壓
外文關鍵詞: GaSe, InSe, Photoluminescence, Thermoreflectance, Surface photovoltage
相關次數: 點閱:402下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以化學氣相傳導法成長Ga1-xInxSe (0≦x≦0.5) 之三元化合物系列半導體,並對此系列晶體進行晶體結構分析、光學與電性量測,藉此研究及討論其特性。此外因為硒化鎵與硒化銦皆為發光訊號極佳的材料,所以近年來被廣為研究,但大多數是改變硫屬化物的部分,鮮少改變III族金屬相,故此研究將探討改變III族金屬相後材料之特性。
    本論文藉由能量散佈光譜儀進行量測,以確定成長材料之元素比與預期成分相符。接著透過X-ray晶格繞射分析儀分析Ga1-xInxSe之晶格結構為六方晶結構,發現當銦摻雜於硒化鎵時,晶格常數a與c會隨著銦增加而變大。並且以固態532 nm雷射為激發源量測拉曼散射光譜,可得到四組振動模態,在 GaSe 分別為為A1’(12) 131.68 cm-1 、 E’(TO) 211.57 cm-1 、 E’ (LO) 251.77 cm-1 、A1’(22) 305.91 cm-1 ,經由實驗發現上述四組震動模態皆會隨著銦成分增加而往低波數移動。
    光學量測實驗中,藉由光激發螢光光譜與熱調制反射光譜分別對Ga1-xInxSe系列樣品進行實驗,發現在這兩個實驗中所得到之激子躍遷訊號皆會隨著銦的成分變化產生紅移現象,並且其能隙訊號會隨著銦的摻雜成分增加,訊號半高寬將會變寬;在溫度變化實驗中,則發現溫度降低時訊號強度變強,並且當能隙訊號往高能量移動,訊號半高寬亦會變寬。此外於光激發螢光實驗之低溫實驗中,發現能隙附近具有數個峰值訊號,其分別為束縛激子群與自由激子。其中自由激子隨溫度升高,紅移且強度衰減速度較緩慢,束縛激子則會因為溫度升高使激子強度快速消長,故低溫時由束縛激子主導,高溫時則由自由激子主導。
    電性量測實驗中,藉由Photo V-I實驗觀測到原本純的硒化鎵為大電阻,但隨著摻雜銦成分越多其電阻會越小,且不同光源對Ga1-xInxSe系列的樣品照射,會使樣品的電阻變小,其中以白光LED最為明顯,因為白光LED的主波長與材料能隙接近。在熱探針實驗則發現硒化鎵在未摻雜銦時,其呈現p型半導體特性,但摻雜銦後即變為n型半導體。最後在表面光電壓量測與光電導量測中,顯示出Ga1-xInxSe系列樣品有很強的光響應特性,且能隙範圍大,未來可應用於光電元件與太陽能電池。


    Ga1-xInxSe (0≦ x ≦0.5) series layered semiconductors were grown by chemical vapor transport (CVT) method using ICl3 as a transport agent. The characterizations of Ga1-xInxSe (0≦ x ≦0.5) crystals have been studied using optical and electrical techniques. The optical techniques are photoluminescence (PL) and thermoreflectance (TR) measurements, while the other techniques are Surface Photovoltage (SPV), Photoconductivity (PC), Photo V-I, and Hot Probe. The crystal structure and lattice vibration behavior of Ga1-xInxSe (0≦ x ≦0.5) series layered crystals were characterized using X-ray diffraction (XRD) and Raman measurements. As a result of XRD, the Ga1-xInxSe (0≦ x ≦0.5) series are crystallized in two-layer hexagonal (2H) structure. The XRD angles and Raman frequencies of the Ga1-xInxSe (0≦ x ≦0.5) series shift to lower values as the composition of indium increases. Based on TR and PL measurements of the Ga1-xInxSe (0≦ x ≦0.5) series, the layered crystals are classified as direct bandgap semiconductors with the bandgap values ranging from visible light to infrared. As the composition of indium increases, energies of the band-edge transition of the Ga1-xInxSe series layers are decreased. We also do the temperature dependence of PL and TR for Ga1-xInxSe (0≦ x ≦0.5), we can find this bandgap signal has a redshift phenomenon and broader . The bandgap of PL range for FWHM (full width half maximum) 34 meV to 67 meV. The bandgap of TR is between 31 meV to 63 meV. The PL results show many of the near-band-edge emission features, including BX (bound exciton) and FX (free exciton) that detected at 4K. The SPV experiment of Ga1-xInxSe has wide range for solar cell absorption wavelength ranging from visible light to ultraviolet. The photoconductivity of Ga1-xInxSe have range from infrared to ultraviolet. In Photo V-I , white light LED have higher response than tungsten lamp because LED wavelength range is near Ga1-xInxSe band gap. The resistivity will decrease as indium composition series increase. The Hot probe result shows pure GaSe is an p-type semiconductor, while the addition of indium causes the series to become n-type semiconductors.

    中文摘要 I ABSTRACT III 致謝 V 目錄 VI 圖索引 VIII 表索引 XII 第一章 緒論 1 第二章 晶體成長 3 2.1 晶體成長方法 3 2.2 晶體成長步驟 4 第三章 實驗原理與量測技術 6 3.1 能量散佈能譜儀(EDS) 6 3.2 X-Ray晶格繞射分析儀(XRD) 8 3.3 原子力顯微鏡(Atomic Force Microscope) 11 3.4 拉曼散射系統(Raman) 12 3.5 光激發螢光光譜量測(PL) 14 3.6 熱調制反射光譜量測(TR) 17 3.7 照光之電壓電流量測(Photo V-I) 21 3.8 熱探針實驗 22 3.9 光電導量測(PC) 23 3.10 表面光電壓光譜量測(SPV) 25 3.10.1 表面光電壓樣品製備 25 3.10.2 表面光電壓之儀器架構 26 第四章 27 4.1 晶格結構與型態 27 4.2 X-ray晶格繞射實驗分析 29 4.3 原子力顯微鏡 33 4.4 拉曼散射光譜 34 4.5 光激發螢光光譜分析 37 4.6 熱調制反射光譜分析 46 4.7 電性實驗分析 56 4.8 光電導實驗分析 61 4.9 表面光電壓實驗分析 62 第五章 結論 64 參考文獻 66

    [1] C. C. Wu, C. H. Ho, W. T. Shena, Z. H. Chenga, Y. S. Huangb, K. K. Tiongc, Optical properties of GaSe1-xSx. series layered semiconductors grown by vertical Bridgman method, Mater. Chem. and Phys. 2004, 88, 313-317.
    [2]C. H. Ho, K. W. Huang, Visible luminescence and structural property of GaSe1-xSx (0≦x≦1) series layered crystals, Solid State Commun. 2005, 136, 591-594.
    [3] X. F. Li, M. W. Lin, A. A. Puretzky, J. C. Idrobo, C. Ma, M. F. Chi, M. Yoon, C. M. Rouleau, I. I. Kravchenko, D. B. Geohegan and K. Xiao, Controlled Vapor Phase Growth of Single Crystalline, Two-Dimensional GaSe Crystals with High Photoresponse, Sci. Rep. 2014, 4, 5497.
    [4] C. H. Ho, Y. J. Chu, Bending Photoluminescence and Surface Photovoltaic Effect on Multilayer InSe 2D Microplate Crystals, Adv. Opt. Mater. 2015, 136, 591-594.
    [5] M. M. Yu, Y. X. Hu, F. Gao, M. J. Dai, L. F. Wan, P. A. Hu, and W. Feng, High-Performance Devices Based on InSe–In1–xGaxSe Van der Waals Heterojunctions, ACS Appl. Mater. Interfaces, 2020, 12, No.22, 24978-24983.
    [6] A. Gouskov, J. Camassel, L. Gouskov, Growth and characterization of III–VI layered crystals like GaSe, GaTe, InSe, GaSe1-xTex and GaxIn1-xSe, Prog. Crystal Growth and Charact. 1982, 5, 323-413.
    [7] A. Kuhn, A. Chevy, R. Chevalier, Crystal Structure and Interatomic Distances in GaSe, Phys. Stat. Sol. (a), 1975, 31, 469-475.
    [8] M. Binnewies, R. Glaum, M. Schmidt, and P. Schmidt, Chemical Vapor Transport Reactions – A Historical Review, Hist. Rev. 2013, 639, 219-229.
    [9] C. H. Ho, C. C. Wu, Z. H. Cheng, Crystal structure and electronic structure of GaSe1-xSx series layered solids, J. Cryst. Growth, 2005, 279, 321-328.
    [10] A. Beiser, Concept of modern physics, Boston : McGraw-Hill, 2003.
    [11] 許樹恩, 吳泰伯, X光繞射原理與材料結構分析, 中國材料科學學會, 1996.
    [12] C. Kittle, Introduction to Solid State Physics 7th, Wiley, 1996.
    [13] B. Bhushan, Nanotribology and Nanomechanics, Springer, 2008, pp 37-110.
    [14] D. F. Hornig, The vibrational spectra of molecules and complex ions in Crystals. I. General Theory, J. Chem. Phys. 1948, 16, No. 11, 1063-1076.
    [15] C. H. Ho, M. H. Lin, Synthesis and optical characterization of a high-quality ZnS substrate for optoelectronics and UV solar-energy, RSC Adv. 2016, 6, 81053-81059.
    [16] F. H. Pollak, H. Shen, Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices, Mater. Sci. Eng. R Rep. 1993, 10, No.7-8, 275-374.
    [17] W. G. Kannuluik, and E. H. Carman, The Temperature Dependence of the Thermal Conductivity of Air, Aust. J. Sci. Res. A Phys. Sci. 1951, 4, 305-314.
    [18] A. Axelevitch, G. Golan, Hot-probe method for evaluation of majority charged carriers concentration in semiconductor thin films, F. U. Elec. Energ. 2013, 26, 187-195.
    [19] V. Donchev, Ts. Ivanov, K. Germanova, and K. Kirilov, Surface photovoltage spectroscopy – an advanced method for characterization of semiconductor nanostructures, Trends Appl. Spectrosc. 2010, 8, 28-66.
    [20] R. M. Hoff, J. C. Irwin, and R. M. A. Lieth, Raman Scattering in GaSe, Can. J. Phys. 1975, 53, 1606-1611.
    [21] S. Jandi and C. Carlon, Raman Spectrum of Crystalline InSe, Solid State Commun. 1978, 25, 5-8.
    [22] C. H. Ho, and H. H. Chen, Optically decomposed near-band-edge structure and excitonic transitions in Ga2S3, Sci. Rep. 2014, 4, 6143.
    [23] Y. P. Varshni, Temperature dependence of the energy gap in semiconductors, Physical, 1967, 34, No.1, 149-154.
    [24] F. Yan, L. Zhao, A. Patanè, P. Hu, X. Wei, W. Luo, D. Zhang, Q. Lv, Q. Feng, C. Shen, K. Chang, L. Eaves, K. Wang, Fast Multicolor Photodetection with Graphene-Contacted p-GaSe/n-InSe Van der Waals Heterostructures, Nanotechnol. 2017, 28, LT01.

    無法下載圖示 全文公開日期 2025/08/19 (校內網路)
    全文公開日期 2025/08/19 (校外網路)
    全文公開日期 2025/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE